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Abstract

Subsampling methods aim to select a subsample as a surrogate for the observed sam-

ple. As a powerful technique for large-scale data analysis, various subsampling methods

are developed for more effective coefficient estimation and model prediction. This re-

view presents some cutting-edge subsampling methods based on the large-scale least

squares estimation. Two major families of subsampling methods are introduced, respec-

tively, the randomized subsampling approach and the optimal subsampling approach.

The former aims to develop a more effective data-dependent sampling probability, while

the latter aims to select a deterministic subsample in accordance with certain optimal-

ity criteria. Real data examples are provided to compare these methods empirically,

respecting both the estimation accuracy and the computing time.

Keywords: Big data, Linear model, Data reduction, Randomization algorithm, Optimal

design, Leverage scores, Subsample, Statistics
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1 Introduction

During recent decades, the rapid development of science and technologies enables researchers

to collect data with unprecedented sizes and complexities. In the meanwhile, large-scale

datasets are emerging in all fields of science and engineering, from academia to industry. For

example, Facebook has over 1.75 billion active users who contribute to nearly 350 million

photos which are uploaded to Facebook daily 1. Consider Twitter, around 6,000 tweets

are tweeted on Twitter in a second 2. In addition, viewers spent around 15 billion hours

(1,712,000 years, which is still rising) on YouTube in a month, and the videos being uploaded

to YouTube are at the rate of 72 hours per minute 3. These social media platforms are

collecting and generating massive datasets with various types, such as text data, image

data, and video data. For another example, the European Bioinformatics Institute, one of

the world’s largest biology-data repositories, stores nearly 160 petabytes of data and back-

ups about genes, proteins, and small molecules. Moreover, such huge amount of genomics

data almost doubles annually (Cook et al., 2019).

The large-scale datasets emerging from all fields provide researchers with unprecedented

opportunities for data-driven decision-making and knowledge discoveries. Nevertheless, tra-

ditional statistical and machine learning algorithms may fail to analyze these data due to

considerable computational burden in terms of both time and memory. The task of analyz-

ing large-scale datasets calls for innovative, effective, and efficient methods or algorithms for

addressing the new challenges due to the explosion of data.

According to Doug (2001), the big data challenges can be evaluated in three main aspects,

including volume, velocity, and variety. Specifically, the volume is the size related to both

the dimension and the number of observations, velocity is the interaction speed with the

data, and the variety means various data structures. In this article, the authors mainly
1Source from https://www.omnicoreagency.com/facebook-statistics/
2Source from https://www.dsayce.com/social-media/tweets-day/.
3Source from https://omnimediafilm.com/blogs/the-power-of-video-marketing-and-how-to-use-it/

37-staggering-video-marketing-statistics-for-2018/.
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discuss the first scenario with a focus on the case that the number of observations n far

exceeds the data dimension p. To alleviate the computational burden caused by large n,

there has been a large number of studies dedicated to developing engineering solutions.

These solutions include cloud computing, designing more powerful supercomputers, parallel

computing, among others. More details of these methods are provided in Section 2.

Despite the effectiveness of the engineering solutions, efficient statistical solutions are still

in high demand, making big data analysis manageable on general-purpose personal comput-

ers. The subsampling method is a powerful technique that can be used to achieve this goal.

A subsampling problem can be described as follows: given a p-dimensional sample {xi}ni=1

generated from an unknown probability distribution, the goal is to take a subsample {x∗
i }ri=1,

r � n, as a surrogate for the original sample. The selected subsample is then processed by

down-streaming analysis for coefficient estimation, model prediction, and statistical infer-

ence.

The usage of subsampling method in large-scale data analysis has been extensively con-

sidered in various fields such as linear regression (Ma and Sun, 2015; Meng et al., 2017; Zhang

et al., 2018; Ma et al., 2020; Dereziński et al., 2018; Clarkson et al., 2019), generalized linear

regression (Ai et al., 2018; Wang et al., 2018; Ai et al., 2020; Yu et al., 2020), streaming

time series (Xie et al., 2019; Li et al., 2019), large-scale matrix approximation (Williams and

Seeger, 2001; Wang and Zhang, 2013; Alaoui and Mahoney, 2015; Altschuler et al., 2019;

Wang et al., 2019), nonparametric regression (Gu and Kim, 2002; Ma et al., 2015; Zhang

et al., 2018; Meng et al., 2020; Sun et al., 2020), among others.

In this review, the authors mainly concentrate on the application of the subsampling

approach in large-scale least squares regression. One of the natural subsampling approaches

is the simple random subsampling method, i.e., selecting a subsample with the equal-weighted

sampling probability. Despite the simplicity, in numerous real-world applications, the simple

random subsampling method may perform poorly, as the select subsample may not be an

effective surrogate of the full sample (Cochran, 2007; Thompson, 2012). To overcome the
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limitation, there has been a large number of methods dedicated to developing more effective

subsampling methods in the recent decade. Most of these methods can be divided into two

classes, i.e., the randomized subsampling approach and the optimal subsampling approach,

as illustrated in Fig. 1.

Figure 1: Illustration for different subsampling methods.

The randomized subsampling approach aims to improve the simple random subsampling

method by carefully designing a data-dependent non-uniform sampling probability {πi}ni=1,

such that
∑n

i=1 πi = 1. Intuitively, the data points that are more informative will be se-

lected with a larger sampling weight. One popular choice of the data-dependent sampling

probability is the normalized statistical leverage scores, leading to the algorithmic leveraging

approach (Ma et al., 2015; Meng et al., 2017; Zhang et al., 2018; Ma et al., 2020). After

the subsample is selected, a weighted subsample least squares estimator will be calculated

instead of a classic least squares estimator. Different from the randomized subsampling ap-

proach, the optimal subsampling approach aims to construct a subsample estimator, which

is most effective for coefficients estimation. In most cases, the subsample is selected based on
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certain rules, especially optimality criteria developed in the design of experiments, e.g., A-,

D- and E-optimality (Pukelsheim, 2006). A classic least squares estimator is then calculated

based on the selected subsample.

The paper is structured as follows. Section 2 introduces some engineering solutions to

tackle big data. In addition, the authors also cover some other applications for subsam-

pling methods in Section 2. Section 3 presents the essential background of the subsampling

approach in the least squares regression problems. Section 4 presents the details of the

randomized subsampling approach and introduces several methods of this kind. Section 5

outlines the basic concepts of optimal experimental design and the details of the optimal

subsampling approaches. Several real data examples are presented to compare the empirical

performance of the subsampling methods, detailed in Section 6. Section 7 summarizes the

paper and discusses some open areas.

2 Related works

A large number of studies are dedicated to developing engineering solutions to alleviate

the computational burden of big data. These solutions include designing more powerful

supercomputers, cloud computing, and parallel computing. In particular, large quantities

of supercomputers have been built rapidly in the past decade. The speed and storage of

supercomputers can be hundreds or even thousands of times faster and larger in comparison

with that of a general-purpose personal computer. However, the main limitation of super-

computers is that they consume enormous energy and may not be accessible to ordinary

users. Therefore, supercomputers are not a panacea for large-scale data analysis.

Cloud computing techniques can partially address the limitation of supercomputers and

make computing facilities accessible to ordinary users. Nonetheless, the major bottleneck for

cloud computing refers to that the inefficiency of transferring data due to the precious low-

bandwidth internet uplinks, not to mention the problems of privacy and security concerns
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during the transfer process (Gai and Li, 2012; Yang et al., 2017; Stergiou et al., 2018; Sun,

2020).

The parallel computing technique, which is closely associated with the distributed algo-

rithm and the divide and conquer method, solves big data problems in the following manner.

The whole sample is first randomly partitioned into k subsamples of equal sizes. Each sub-

sample is then analyzed by an independent local processor. Finally, the results respecting all

the local processors are combined to provide a final result by taking either a majority voting

or a weighted average. The parallel computing technique effectively alleviates the computa-

tional burden for big data analysis, respecting both time and memory. Consequently, such

a technique has been extensively studied in various statistical and machine learning fields

(Brockwell, 2006; Bekkerman et al., 2011; Zhang et al., 2013; Low et al., 2014; Murray et al.,

2016; Xu et al., 2018). However, one limitation of parallel computing is that, to obtain a

considerable reduction of the computational cost, one usually needs hundreds or thousands

of local processors. Such a large number of processors may not be obtainable by ordinary

researchers.

Different from the aforementioned engineering solutions, the subsampling approach is

a powerful statistical solution with the potential to make big data analysis manageable

on general-purpose personal computers. In addition, the subsampling approach has also

been extensively applied in measurement constrained supervised learning, privacy-preserving

analysis, efficient training of neural networks, and industry.

Measurement constrained supervised learning is an emerging problem in machine learn-

ing (Settles, 2012; Wang et al., 2017; Dereziński et al., 2018; Clarkson et al., 2019; Meng

et al., 2020). In this problem, the predictor observations are available, while the response

observations are unavailable or are difficult to obtain. Consider the task of predicting the

soil functional property, i.e., the property related to a soil’s capacity to support essential

ecosystem service (Hengl et al., 2015). Suppose that a researcher wants to model the re-

lationship between the soil functional property and some predictors, which can be derived
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from remote sensing data. To obtain the response, i.e., the accurate measurement of the

soil property, a sample of soil from the target area is required. The response thus can be

extremely time-consuming or even impractical to obtain, especially when the target area is

off the beaten path. As a result, it is ideal to carefully identify a subsample of predictor

observations, measure the corresponding responses, and then fit a supervised learning model

based on the subsample of the predictors and responses.

The privacy-preserving analysis is taken as another example. In some applications, the

subsampling approach has the potential to enhance data security (Nissim et al., 2007; Li

et al., 2012). Specifically, a carefully selected subset of data can reveal little confidential

information (Shu et al., 2015).

Considering the training process of deep neural networks, it happens that data points

are usually not equally important. Specifically, some of the data points are properly handled

after a few epochs of training, and others could be ignored at that point without impacting

the final model. Recently, researchers have shifted their focus on using importance sampling

to improve and accelerate the training of neural networks (Bengio et al., 2009; Alain et al.,

2015; Loshchilov and Hutter, 2015; Schaul et al., 2015; Katharopoulos and Fleuret, 2018).

In addition, subsampling methods also have wide applications in the industry. For ex-

ample, subsampling methods help speed up the training process of statistical and machine

learning models. Therefore, subsampling methods have the potential to benefit real-time

monitoring systems, including abnormal detection systems, and fault diagnosis systems.

The authors refer to Jiang and Yin (2018); Yin et al. (2019); Jiang et al. (2020) for recent

reviews of such areas.

3 Problem formulation

Considering the classical linear model,

yi = xᵀ
iβ0 + εi, i = 1, 2, . . . , n, (1)
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where yi’s are the responses, xi’s are the p-dimensional predictors (p � n), β0 ∈ Rp is

the vector of unknown coefficients, {εi}ni=1 are i.i.d. random errors that follow a normal

distribution with mean zero and constant variance σ2, i.e., N(0, σ2). Let y ∈ Rn be the

response vector and X ∈ Rn×p be the predictor matrix. The coefficient vector β0 can be

estimated by calculating the ordinary least square (OLS),

β̂OLS = arg min
β
‖y −Xβ‖2.

where ‖ · ‖ denotes the Euclidean norm. When X is full column rank, it is well-known that

β̂OLS = (Xᵀ X)−1 Xᵀy.

Otherwise, when X is singular, (XᵀX)−1 should be replaced by a generalized inverse of

(XᵀX). Let H = X(XᵀX)−1Xᵀ. The predicted response vector ŷ can be calculated as

ŷ = X (XᵀX)−1 Xᵀy = Hy.

The matrix H is thus often called the hat matrix, as it looks like a hat on response vector y

to obtain ŷ. The hat matrix H plays a crucial role in the randomized subsampling approach,

which will be detailed in Section 4. To calculate the hat matrix H, people usually utilize

the singular value decomposition (SVD) of X for robustness concern. In particular, let

Xn×p = Un×nΛn×pV
ᵀ
p×p be the singular value decomposition of X, where U and V are both

orthonormal matrices and Λ is a diagonal matrix. Through some calculations, it can be

demonstrated that H = UUᵀ and β̂OLS = (XᵀX)−1Xᵀy = VΛ−1Uᵀy.

Although the least squares estimator β̂OLS has a closed form, the computational cost for

calculating the solution is of the order O(np2), which can be daunting when n and/or p are

large. To alleviate the computation burden, various subsampling methods are developed,

from which the simple random subsampling may be the most natural one. The simple
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random subsampling method works as follows. Given a subsample size r, randomly select a

subsample of size r from the observed sample with equally weighted sampling probabilities,

i.e., πi = 1/n, for i = 1, 2, . . . , n. Then, the least squares estimate is calculated purely based

on the selected subsample. Details are summarized as follows.

Algorithm 1: Simple random subsampling method

Input: X ∈ Rn×p, y ∈ Rn, subsample size r
Randomly sample r observations using equally weighted sampling probabilities.
Let y∗ and X∗ be the selected response vector and the matrix, respectively.

Output: β̃RAND = arg minβ ‖y∗ −X∗β‖2.

Calculating the estimator β̃RAND requires only O(rp2) computation time, which is a

significant reduction in comparison with O(np2), especially when r � n. In addition to

the computational benefits, such an estimator also enjoys some theoretical benefits. In

particular, Ma et al. (2015) showed β̃RAND is an unbiased estimator respecting the true

coefficient β0. In addition, conditional on the sample, β̃RAND is unbiased to the full sample

least squares estimator β̂OLS. Despite the algorithmic and theoretical benefits, Algorithm 1

may suffer from high estimation variance. Specifically, it can be shown that the estimation

variance of β̃RAND is proportional to n/r (Ma et al., 2015). Consequently, in practice, when

r is relatively small compared to n, the simple random subsampling method may generate

unacceptable results.
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Figure 2: Illustration of the unacceptable result of simple random subsampling method in
least squares estimation.

Figure 2 shows a toy example that Algorithm 1 fails to provide a decent estimate. In

the current example, data are generated from the model yi = xi + 1 + εi, i = 1, . . . , 1000,

where xi is generated from t-distribution with 5 degrees of freedom and {εi}ni=1 are the

i.i.d. standard normal errors. The data points are labeled as gray points, and the true

regression line is labeled as the solid black line. The left panel of Fig. 2 shows the full sample

regression line, which is labeled as the dashed black line. The authors observe that the full

sample regression line can effectively estimate the true regression line. Then the authors

use the simple random subsampling algorithm to select a subsample of size ten, and label

the selected data points as black dots in the right panel of Fig. 2. The dashed black line

represents the fitted regression line of the selected subsample. Obviously, the subsample

linear regression line deviates severely from either the full sample regression line or the true

regression line. Such an observation suggests that the performance of the simple random

subsampling algorithm may deteriorate significantly when the subsample size r is small.

To overcome the limitation of the simple random subsampling, existing methods proposed

to utilize the bagging technique or the divide and conquer strategy (Chen and Ren, 2009;

Lin and Xi, 2011; Li et al., 2013; Zhang et al., 2013; Chen and Xie, 2014; Xu et al., 2016).

In particular, these methods calculate the subsample least squares estimator multiple times,
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and each estimator is calculated based on an independent random subsample. Then, all the

estimators are aggregate together by taking a weighted average to build the final estimator.

Existing literature shows the bagging techniques and the divide and conquers techniques can

effectively reduce the variance for coefficients estimation (Bühlmann et al., 2002; Li et al.,

2013; Zhang et al., 2013). As a result, these techniques are extensively applied as a surrogate

to the simple random subsampling method. Despite the effectiveness, one limitation of these

techniques refers to that they require a much larger number of response values in comparison

with the simple random subsampling method does. Thus, these techniques are not suitable

for the measurement-constrained supervised learning or the privacy-preserving analysis, in

which cases only a few numbers of the response values are available.

In the recent decade, a large number of studies are dedicated to developing more elegant

subsampling methods, which select the subsamples that are more effective for large-scale

least squares estimation. These methods aim to develop a subsample least squares estimator

that has a smaller estimation mean squared error (MSE) than the simple random subsam-

pling estimator. In addition, the proposed methods only require a relatively small number

of response values. These methods thus are suitable for both measurement-constrained su-

pervised learning and the privacy-preserving analysis.

4 Randomized subsampling methods

In this section, the authors introduce a family of randomized subsampling methods to approx-

imate the full sample least squares estimation. The randomized subsampling methods utilize

data-dependent non-uniform sampling probability to select a random subsample, and then

calculate the estimate based on such an example. Such a weighted subsampling approach

has long been studied in the literature of importance sampling to improve the numerical effi-

ciency of the Monte Carlo approach (Clark, 1961; Siegmund, 1976; Glynn, 1996; Liu, 2008).

Algorithm 2 summarizes the general framework of the randomized subsampling method for
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least squares estimation.

Algorithm 2: General randomized subsampling method

Input: X ∈ Rn×p, y ∈ Rn, subsample size r, sampling probability {πi}ni=1

Randomly sample r observations using {πi}ni=1.
Let y∗ and X∗ be the selected response vector and the matrix, respectively.
Denote {π∗

1, . . . , π
∗
r} as the sampling probability respecting the selected observations.

Let the diagonal matrix W = diag(1/π∗
1, . . . , 1/π

∗
r).

Output: β̃W = arg minβ(y∗ −X∗β)ᵀW(y∗ −X∗β).

Algorithm 2 calculates a weighted least squares estimate instead of an ordinary least

squares estimate in Algorithm 1. Note that when the sampling probability {πi}ni=1 is equal-

weighted, the ordinary least squares estimation and the weighted least squares estimation

yield the same result. However, for a general non-equally weighted sampling probability, Ma

et al. (2015) showed that calculating the weighted least squares estimation is essential to

obtain the estimator β̃W that is asymptotically unbiased to the full sample estimator β̃OLS,

condition on the sample. Furthermore, Ma et al. (2015) showed that β̃W is asymptotically

unbiased to the true coefficients β0.

Despite the theoretical effectiveness of Algorithm 2, one fundamental question remains

unanswered, i.e., how to decide the sampling probability {πi}ni=1. Intuitively, a good strategy

for determining {πi}ni=1 is to assign larger weights to the data points that are more "informa-

tive," i.e., the ones that are more influential to coefficients estimation and model prediction.

Furthermore, another fundamental question is that does there exist any sampling probabil-

ity that is in some sense "optimal" respecting any optimality criterion. To answer these

questions, many randomized subsampling algorithms are developed in the recent decade.

Recall that H = X(XᵀX)−1Xᵀ denotes the hat matrix. Let hii = xᵀ
i (X

ᵀX)−1xi be the i-th

diagonal element of the hat matrix H. Table 1 summarizes some representative subsampling

strategies with the proposed sampling probability {πi}ni=1. Table 1 also summarizes some

volume subsampling approaches, which utilizes a joint sampling distribution over subsam-

12



Table 1: Some representative randomized subsampling methods

Methods Sampling Probability References

Simple Random Subsampling πRANDi = 1/n /

Basic Leverage Subsampling πBLEVi = hii/p Drineas et al. (2006)

Shrinkage Leverage Subsampling πSLEVi = αhii/p+ (1− α)/n, α ∈ [0, 1] Ma et al. (2015)

Inverse Covariance Subsampling πICi = ||(XᵀX)−1xi||/(
∑n
i=1 ||(XᵀX)−1xi||) Ma et al. (2020)

Root Leverage Subsampling πRLi =
√
hii/(

∑n
i=1

√
hii) Ma et al. (2020)

Predictor Length Subsampling πPLi = ||xi||/(
∑n
i=1 ||xi||) Ma et al. (2020)

Standard Volume Subsampling Pr(S) =
det(X>

SXS) n− p
r − p

 det(X>X)

* Dereziński and Warmuth (2017)

Leveraged Volume Subsampling Pr(τ) ∝ det
(∑r

i=1
1
qτi
xτix

>
τi

)∏r
i=1 qτi

** Dereziński et al. (2018)

* where S is the subset of {1, 2, . . . , n} , r is the size of S and XS is the submatrix of the rows from X indexed by the
set S.
** where τ ∈ {1, 2, . . . , n}r, r > 4p2 and qi = hii/p, i = 1, 2, . . . , n.

ples to select a subsample directly, see Dereziński and Warmuth (2017) and Dereziński et al.

(2018) for more details.

4.1 Leverage scores and the basic leverage subsampling method

Recall that the key to the success of the randomized subsampling algorithm is to carefully

design a sampling probability, reflecting the importance of each data point. To achieve the

goal, a metric is needed, which can quantitatively evaluate the importance of each data point.

In the statistical literature for model diagnostics, there exists the concept of leverage score

to achieve this goal (Weisberg, 2005). For the i-th data point, its leverage score is defined

as ∂ŷi/∂yi. Intuitively, if the leverage score is large, it indicates that a small disturbance in

yi results in a big change in ŷi, thus exerting a crucial role in model diagnostics.

Although the leverage score is defined upon the response yi and its fitted value, one

important property of the leverage score is that, in the linear regression model, the leverage

score of a data point is irrelevant to its response value and only associates with its predictors.

Specifically, recall that one has ŷi = Hyi in linear models. Let hii = xTi (XᵀX)−1xi be the
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i-th diagonal element of the hat matrix H, one thus has

∂ŷi
∂yi

=
∂
(∑n

j=1 hijyj

)
∂yi

= hii, (2)

i.e., the leverage score of the i-th data point equals hii, and is independent of the response yi.

Considering ei, which is the residue respecting the i-th data point, it can be shown that

0 < hii < 1 and

Var(ei) = Var(ŷi − yi) = (1− hii)σ2. (3)

Equation (3) indicates that the data point with a high leverage score is associate with a small

variance of the residue. In other words, the linear regression line tends to pass close to these

data points with high leverage scores, e.g., these points have a large impact on the linear

regression line. When p = 1, it can be shown that hii = 1/n + (xi − x̄)2 /
∑n

j=1(xj − x̄)2,

where x̄ =
∑n

j=1 xj/n. In such cases, the data points with large leverage scores are the data

points that are far away from the sample mean.

The basic leverage subsampling method (BLEV), also called Algorithmic Leveraging,

utilizes a sampling probability that is proportional to leverage scores, i.e., πBLEVi ∝ hii,

i = 1, . . . , n, (Drineas et al., 2006; Ma et al., 2015; Ma and Sun, 2015; Meng et al., 2017).

Considering the sum of the leverage scores, when X has full column rank, one has

n∑
i=1

hii = tr(H) = tr
(
X (XᵀX)−1 Xᵀ

)
= tr

(
(XᵀX)−1 XᵀX

)
= tr (Ip) = p. (4)

Equation (4) indicates that the BLEV sampling probability

πBLEVi =
hii
p

=
xᵀ
i (X

ᵀX)−1xi
p

, i = 1, . . . , n,

is valid, since 0 < hii/p < 1 and
∑n

i=1(hii/p) = 1.

The computational cost for the BLEV method mainly incurs in calculating the leverage

scores. To calculate the leverage scores, one can utilize the singular value decomposition
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of the observed sample, resulting in a computational cost of the order O(np2). However,

such a computational cost is the same as the one for calculating the full sample least squares

estimation. Fortunately, there are random projection-based techniques for approximating the

leverage scores efficiently, consequently reducing the running time from O(np2) to o (np2)

(Drineas et al., 2012). The authors refer to Avron et al. (2010); Meng et al. (2014); Gittens

and Mahoney (2013) for further development of such techniques.

The basic leverage subsampling method has long been studied and has been extensively

applied in various fields (Papailiopoulos et al., 2014; Rudi et al., 2018; Xie et al., 2019;

Agarwal et al., 2020). A variety of empirical studies show such a method outperforms the

simple random subsampling method (Drineas et al., 2006; Mahoney, 2011; Drineas et al.,

2012). In particular, Drineas et al. (2006) adopted an algorithmic perspective that concen-

trates on providing worst-case run-time bounds for different inputs. The authors showed

that the basic leverage subsampling method provides worst-case algorithm results that are

uniformly superior to the simple random subsampling method. Despite the effectiveness of

BLEV, some natural questions remain unanswered. For example, whether the basic leverage

sampling probability {hii/p}ni=1 can be improved? Moreover, what is an appropriate met-

ric to evaluate the effectiveness of a sampling probability? In particular, how to develop a

sampling probability that is optimal, respecting such a metric? To answer these questions, a

large number of sampling probabilities are developed in the recent decade, which are detailed

as follows.

4.2 Advanced leverage subsampling methods

One natural criterion to evaluate different randomized subsampling methods is to quantify

the difference between the subsample estimates and the true coefficients β0. To achieve the

goal, Ma et al. (2020) measured such a difference based on the asymptotic mean squared

error (AMSE) respecting the true coefficients β0 and developed the following lemma for a

general randomized subsample estimator β̃W , which was introduced in Algorithm 2.
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Lemma 4.1. Assume the number of predictors p is fixed and the following regularity condi-

tions hold.

Condition (1): There exist positive constants b and B such that b ≤ λmin ≤ λmax ≤ B,

where λmax and λmin are the maximum and minimum eigenvalues of matrix XTX/n, respec-

tively.

Condition (2): The subsample size satisfies r = O
(
n1−δ), 0 ≤ δ < 1. The minimum

sampling probability πmin = O (n−γ0) , where γ0 ≥ 1 and γ0 + α < 2.

Under Condition (1)-(2), as n→∞, one has

(
σ2Σ0

)− 1
2

(
β̃W − β0

)
d→ N (0, Ip)

Here, Σ0 = (XᵀX)−1(Xᵀ(In + Ω)X)(XᵀX)−1, where Ω = diag{1/rπi}ni=1 and Ip is the p× p

identity matrix.

As shown in Lemma 4.1, Condition (1) indicates that the matrix XᵀX is positive definite,

i.e., the matrix X has full column rank. Condition (2) provides a lower bound on the

smallest sampling probability. In addition, Condition (2) suggests that bounding sampling

probabilities from below mitigates the inflation of the estimation variance. When Condition

(1)-(2) holds, Lemma 4.1 indicates that the general randomized subsample estimator β̃W

is an unbiased estimator to the true coefficients β0. Furthermore, the AMSE of β̃W is

equivalent to its asymptotic variance, which can be written as

AVar(β̃W ) = σ2(XᵀX)−1 + σ2(XᵀX)−1XᵀΩX(XᵀX)−1. (5)

Equation (5) indicates that the asymptotic variance of the estimator β̃W includes two parts,

where the first part σ2(XᵀX)−1 is the variance of the full sample OLS estimator, and the

second part σ2(XᵀX)−1XᵀΩX(XᵀX)−1 is associated with the subsampling procedure. To

obtain the optimal sampling probability respecting the AMSE, one thus only needs to find

the Ω that can minimize (XᵀX)−1XᵀΩX(XᵀX)−1.

16



Ma et al. (2015) also considered Equation (5), and first emphasized that when Condi-

tion (2) does not hold in practice, the estimation variance of the basic leverage subsampling

method, i.e., AVar(β̃BLEV ), may be inflated to arbitrary large. Such a case usually hap-

pens when there exist some data points whose leverage scores dominate the others, and

consequently, there exist some leverage scores that are extremely small. To combat such a

limitation of the basic leverage subsampling method, Ma et al. (2015) proposed the shrinkage

leverage subsampling method (SLEV), which utilizes the following sampling probability

πSLEVi = α
hii
p

+ (1− α)
1

n
, i = 1, . . . , n.

Here, 0 < α < 1 is a pre-specified parameter, and it is suggested to choose α ∈ [0.8, 0.9] in

practice (Ma et al., 2015). Intuitively, the SLEV sampling probability {πSLEVi }ni=1 interpo-

lates between the basic leverage sampling probability {πBLEVi }ni=1 and the equally weighted

sampling probability. Analogous to the BLEV method, SLEV assigns larger sampling proba-

bility weights to the data points with high leverage scores. In addition, SLEV overcomes the

disadvantage of BLEV by providing the sampling probability a lower bound, i.e., (1−α)/n,

which can thus avoid an arbitrary large estimation variance.

Considering Equation (5), one natural question is whether there exists an optimal sam-

pling probability {πi}ni=1 that minimizes the asymptotic variance of the corresponding esti-

mator? In other words, if given the same tolerance of uncertainty, i.e., to achieve a certain

small standard error, which subsample estimator requires the smallest subsample size r?

To answer these questions, Ma et al. (2020) utilized the method of Lagrange multipliers,

showing that such an optimal sampling probability exists, which can be written as

πICi =
||(XᵀX)−1xi||∑n
i=1 ||(XᵀX)−1xi||

, i = 1, . . . , n.

The subsample estimator corresponding to {πICi }ni=1, called the inverse-covariance estimator,

17



has the smallest AMSE that equals

AMSE(β̃IC) = σ2tr
{

(XᵀX)−1
}

+
σ2

r

n∑
i=1

||(XᵀX)−1xi||2

πICi
.

In addition to making inferences on β0, researchers may also be interested in estimating

y = Xβ0, since inference on the true regression line Xβ0 is crucially important in regression

analysis. Ma et al. (2020) proved that the so-called root leverage subsample estimator β̃RL

yields the smallest AMSE respecting Xβ0. Recall that hii = xTi (XᵀX)−1xi is the leverage

score of the i-th data point. The sampling probability respecting β̃RL can be depicted as

πRLi =
||X(XᵀX)−1xi||∑n
i=1 ||X(XᵀX)−1xi||

=

√
hii∑n

i=1

√
hii
, i = 1, . . . , n, (6)

where the last equality in Equation (6) is due to the fact that

||X(XᵀX)−1xi||2 = (X(XᵀX)−1xi)
ᵀ(X(XᵀX)−1xi) = xᵀ

i (X
ᵀX)−1xi = hii.

Besides, Ma et al. (2020) also considered the so-called predictor length subsample estimator

β̃PL with the sampling probability

πPLi =
||xi||∑n
i=1 ||xi||

, i = 1, . . . , n,

and demonstrated that β̃PL has the smallest AMSE respecting XᵀXβ0. Note that when

XᵀX = Ip, it is easy to check that πICi = πRLi = πPLi , i = 1, . . . , n. The authors refer to Ma

et al. (2020) for a more in-depth comparison for these randomized subsample estimators.

5 Optimal subsampling methods

The present section introduces a family of optimal subsampling methods to approximate

the full sample least squares estimation. Different from the aforementioned randomized sub-
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sampling methods, optimal subsampling methods aim to identify a deterministic subsample,

whose corresponding subsample estimator is most effective in approximating the true co-

efficients or the full sample least squares. In most cases, such a deterministic subsample

is selected based on certain rules, especially optimality criteria developed in the design of

experiments, e.g., A-, D- and E-optimality (Pukelsheim, 2006). An ordinary least squares

estimate is then calculated based on the selected subsample. Some essential background of

the optimality criteria is introduced below, followed by some representatives of the optimal

subsampling methods.

5.1 Optimal design techniques and optimality criteria

As a class of experimental designs, optimal design techniques aim to construct a set of k

design points within a given bounded design space, such that these design points are most

effective for the estimation of statistical models (Pukelsheim, 2006). Under the setting of

linear regression models, as shown in Model (1), after the sample is collected, the OLS

estimator β̂OLS is usually utilized to estimate the true parameter β0. The OLS estimator

β̂OLS is known to be the best linear unbiased estimator, whose mean squared error (MSE)

respecting β0 can be written as σ2(XᵀX)−1, where σ2 is an unknown constant. The goal

of optimal design in the linear regression model is thus equivalent to construct the design

matrix X that minimizes (XᵀX)−1.

In the cases when the number of predictors d ≥ 2, (XᵀX)−1 is a matrix, and is therefore

difficult to minimize. To combat the obstacle, existing optimal design techniques aim to

minimize a summary statistic of (XᵀX)−1, as a surrogate to the matrix (XᵀX)−1 itself. In

particular, such summary statistics are some real-valued functions that compress a matrix

into a real number. Some popular choices of the summary statistics include the trace of

a matrix, the determinant of a matrix, and the maximum eigenvalue of a matrix. These

summary statistics, summarized below, are associated with the A-, D- and E-optimality

criteria in optimal designs.
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• A-optimality: aim to minimize the trace of the (XᵀX)−1.

• D-optimality: aim to minimize the determinant of (XᵀX)−1.

• E-optimality: aim to minimize the maximum eigenvalue of (XᵀX)−1.

5.2 Subsample selection based on optimality criteria

Recall that {y∗i ,x∗
i }ri=1 represents a selected subsample. Consider the following subsample-

based least squares estimator

β̃X∗ = (X∗ᵀX∗)−1X∗ᵀy∗,

where X∗ = (x∗
1, . . . ,x

∗
r)

ᵀ. The estimation variance of β̃X∗ respecting β0, conditional on the

sample {xi}ni=1, can be written as σ2(X∗ᵀX∗)−1. Therefore, a natural way to construct the

optimal subsample estimator is to find the subsample {x∗
i }ri=1 that minimizes the estimation

variance σ2(X∗ᵀX∗)−1. Analogous to optimal designs, one can minimize a summary statistics

of (X∗ᵀX∗)−1 as a surrogate to achieve the goal.

Following this line of thinking, an increasing number of methods have been dedicated to

selecting the optimal subsample based on a certain optimality criterion in the recent decade.

Wang et al. (2019) considered the D-optimality criterion and proposed a heuristic algorithm

to select the D-optimal subsample. For each column, the proposed algorithm selects the data

points respecting the smallest and the biggest elements of this column. The final subsample is

the one that combines the selected data points respecting all the columns. Harman and Rosa

(2020) proposed two greedy heuristic algorithms for constructing the optimal subsample with

respect to the D-optimality criterion. Wang et al. (2017) and Nikolov et al. (2019) considered

selecting the optimal subsample approximately based on the A-optimality criterion. Allen-

Zhu et al. (2017) proposed polynomial-time algorithms for numerous classical optimality

criteria, such as A-optimality, D-optimality, V -optimality, and others.
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5.3 Robust subsample selection

Although the existing subsampling methods have already shown extraordinary performance

on coefficients estimation and model prediction, their performance highly depends on the

model specification. In particular, both the leverage scores and the optimality criteria,

introduced in Section 3.1 and Section 4.1, respectively, are derived based on linear regression

models. Nevertheless, the model specification is a trial-and-error process, during which a

postulated model could be misspecified. The subsampling method derived from a postulated

linear regression model does not necessarily lead to a decent subsampling method for the

true model. In other words, the model-based subsampling methods may lead to unacceptable

results when the model is misspecified.

In practice, the true underlying model almost always remains unknown to practitioners.

The subsampling hence is highly desirable to be robust to possible model misspecification.

To achieve the goal, Meng et al. (2020) considered the setting that the linear regression

model is a postulated model, and the true model contains both a linear part and unknown

misspecification. The authors provided an analytic framework for evaluating the AMSE of

the subsample least squares estimator in a misspecified linear model. Recall that when the

linear regression model is correctly specified, the least squares estimator is unbiased to true

coefficients. However, when the model is misspecified, Meng et al. (2020) showed that it

is extremely easy to construct a "worst-case" subsample, which yields a subsample least

squares estimator that may have an arbitrarily large estimation bias.

To combat the obstacle, Meng et al. (2020) aims to select a subsample, which balances

the trade-off between bias and variance, in order to yield a robust estimation of coefficients.

To achieve the goal, the authors showed that it is equivalent to select a subsample whose

information matrix has a relatively low condition number, a traditional concept in numerical

linear algebra (Trefethen and Bau, 1997). They then proposed an efficient algorithm, called

"Lowcon," to identify a subsample with a relatively low condition number. In addition, they

also showed that the proposed subsample estimator has a finite upper bound of the mean
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squared error, and it approximately minimizes the "worst-case" bias, with respect to all the

possible misspecification terms, under some regularity conditions.

6 Real data examples

This section evaluates the performance of different subsampling methods on two real-world

datasets, respecting both estimation accuracy and computational time. The subsampling

methods considered here including simple random subsampling (RAND), basic leveraged

subsampling (BLEV), shrinkage leverage subsampling (SLEV) with parameter α = 0.9,

root leverage subsampling (RL), inverse covariance subsampling (IC), predictor length sub-

sampling (PL), information-based optimal subset selection (IBOSS) (Wang et al., 2019),

Galil-Kiefer method (GKM) (Harman and Rosa, 2020) and Kumar-Yildirim method (KYM)

(Harman and Rosa, 2020). Here, the first six methods are randomized subsampling ap-

proaches, summarized in Table 1, while the last three are representatives of the optimal

subsampling approaches.

To evaluate the performance of subsampling methods in real data studies, a critical prob-

lem is that the true coefficient β0 is not known to the practitioners. It is thus impossible

to calculate the mean squared error of an estimate respecting the true coefficients. To over-

come this problem, the authors follow Wang et al. (2019), and use the full-sample ordinary

least squares estimator β̂OLS as a surrogate for β0. In particular, in the i-th replicate,

i = 1, . . . , 100, a bootstrap sample of size n is first uniformly sampled with replacement from

the observed sample. Next, each subsampling method selects a subsample, resulting in a sub-

sample least squares estimator β̂(i). The subsample sizes are set to be r = 5p, 10p, 15p, 20p,

where p is number of predictors. The experiments are replicated for one hundred times, and

the empirical mean squared error for each subsample estimate is then calculated as

EMSE =
100∑
i=1

||β̂(i) − β̂OLS||2/100.

22



Table 2: EMSEs of Example 1, with standard deviations presented in parentheses.

Method r = 5p r = 10p r = 15p r = 20p
RAND 1.44(0.31) 0.66(0.36) 0.43(0.28) 0.31(0.24)
BLEV 0.83(0.37) 0.40(0.29) 0.26(0.27) 0.16(0.17)
SLEV 1.06(0.42) 0.47(0.25) 0.29(0.16) 0.16(0.16)
RL 0.77(0.33) 0.51(0.23) 0.23(0.19) 0.21(0.16)
PL 1.26(0.49) 0.59(0.29) 0.38(0.23) 0.34(0.22)
IC 0.93(0.29) 0.46(0.26) 0.28(0.23) 0.22(0.15)
IBOSS 0.91(0.46) 0.73(0.55) 0.53(0.35) 0.18(0.25)
GKM 12.30(1.12) 9.79(0.76) 10.75(0.87) 8.81(0.82)
KYM 12.18(0.96) 10.81(1.30) 11.45(1.25) 11.52(1.14)

Consequently, an effective subsample estimator should yield a relatively small value of EMSE.

6.1 Example 1: Chemical Sensors Data

The authors first consider the chemical sensors data, which were collected at the ChemoSig-

nals Laboratory in the BioCircuits Institute, University of California San Diego. The dataset

contains the readings of 16 chemical sensors exposed to the mixture of Ethylene and CO at

varying concentrations in air. Further information about this dataset can be found in Fonol-

losa et al. (2015).

Following Wang et al. (2019), the authors take the readings from the last sensor as the

response and readings from other sensors except for the second one as covariates. The log-

transformation is applied to all the sensors readings since the trace concentrations are often

lognormal distributed. In addition, following Wang et al. (2019), the first 20,000 data points

are excluded since these data points are corresponding to less than 4 min of system run-in

time. The final sample thus contains n = 4, 188, 261 observations. The data are assumed to

follow the classical linear regression model, as stated in Model (1).
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Table 2 summarizes the EMSEs for all the subsample estimates, and the best result in

each column is in bold letter. One can observe that the GKM method and the KYM method

perform worse than the RAND method in all cases. The performance of IBOSS is comparable

with the performance of the RAND method. The randomized subsampling methods, i.e.,

BLEV, SLEV, RL, PL, and IC, consistently outperforms the RAND method in all the cases.

However, among these five methods, none of them consistently outperforms the others.

The authors then consider the computing time for these subsampling methods when

r = 20p. The average CPU time of these methods are 0.001s(RAND), 3.76s(BLEV),

3.77s(SLEV), 3.81s(RL), 0.49s(PL), 4.49s(IC), 1.20s(IBOSS), 8.59s(GKM) and 2.41s(KYM).

Compared to the CPU time for the full sample OLS estimate, which is 4.62s, all the subsam-

ple estimates, except for GKM, requires a shorter time. The RAND method, as expected,

requires the shortest CPU time. Finally, one can observe that the PL method requires a

relatively short CPU time, and it at times yields the best estimation accuracy according to

Table 2.

6.2 Example 2: Diamond Price Prediction

The second real-world dataset is called Diamond Price Prediction, which contains the prices

and the features of nearly 54,000 diamonds. Of interest is to predict the price of the diamond

(y) by using three continuous predictors (p = 3): total depth percentage, the weight of the

diamond, and width of the top of the diamond relative to widest point. The data are assumed

to follow the classical linear regression model, as stated in Model (1).

Table 3 summarizes the EMSEs for all the subsample estimates, and the best result

in each column is in bold letter. Analogous to Table 2, one can observe that the GKM

method and the KYM method perform worse than the RAND method in all cases. However,

different from Table 2, one can observe that IBOSS is not performing well in Table 3. The

authors attribute such an observation to the fact that the second real data example shows
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Table 3: EMSEs of Example 2, with standard deviations presented in parentheses.

Method r = 5p r = 10p r = 15p r = 20p
RAND 6.02(2.68) 3.08(1.98) 1.77(1.51) 1.52(1.66)
BLEV 4.54(2.51) 1.67(1.62) 1.08(1.26) 0.94(1.27)
SLEV 5.32(2.96) 1.96(1.71) 1.30(1.34) 0.82(1.08)
RL 5.73(2.99) 1.74(1.49) 1.33(1.37) 0.90(1.05)
PL 5.32(2.66) 3.01(2.04) 1.63(1.71) 1.41(1.41)
IC 5.45(2.92) 1.92(1.56) 1.60(1.27) 1.00(1.20)
IBOSS 9.70(0.57) 8.80(0.49) 8.50(0.41) 8.31(0.43)
GKM 11.02(0.53) 10.89(0.58) 10.87(0.51) 10.95(0.52)
KYM 10.87(0.66) 10.92(0.68) 10.65(0.67) 10.80(0.65)

less linear pattern than the first one does. In particular, the authors find that the coefficient

of determination, i.e., the R2, for both datasets are equal to 0.999 and 0.854, respectively.

The IBOSS method tends to yield an unpleasant performance when the R2 of the dataset is

relatively away from one. Finally, analogous to Table 2, one can observe that the randomized

subsampling methods consistently outperform the RAND method in all the cases. However,

among these randomized subsampling methods, none of them consistently outperforms the

others.

The average CPU time for these methods (r = 20p) are 1.20ms (RAND), 5.00ms (BLEV),

5.53ms (SLEV), 6.40ms (RL), 3.53ms (PL), 6.30ms (IC), 3.85ms (IBOSS), 5.70ms (GKM),

and 2.40ms (KYM). Analogous to the first example, most of these methods require a shorter

CPU time than the full sample OLS estimate (6.4ms). One can also observe that the RL

method has a decent estimation accuracy and requires a relatively short CPU time, thus

takes the balance between the estimation accuracy and the computational cost.
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7 Conclusion and future research

This paper reviews modern subsampling methods for solving large-scale least squares re-

gression problems, focusing on the randomized subsampling methods and the optimal sub-

sampling methods. The authors discuss the theoretical advantages of these methods over

the simple random subsampling method. Real data studies show most of the existing sub-

sampling methods approximate the least squares estimate effectively and efficiently. Among

these methods, it is observed that the predictor length subsampling method tends to take

the balance between the estimation accuracy and the computational cost most effectively.

Most reported research efforts are exploring subsampling methods for least squares prob-

lems. In contrast, there is relatively little reported work in literature discussing subsampling

methods for other models or algorithms such as generalized linear models, nonparametric

regression, kernel methods, time series models, variable selections, and deep learning. This

happens due to the fact that these models have a more complicated formulation than linear

models. Thus, the optimal sampling probability (or the optimality criteria) and efficient

subsampling algorithms respecting these models may be hard to derive. For example, Wang

et al. (2018) proved that the leverage scores for the logistic regression model are dependent

on the response variable, thus resulting in a more complicated leverage-based subsampling

algorithm than the one for the linear regression model. More research efforts are needed to

develop effective and efficient subsampling algorithms beyond least squares estimation.

Another interesting research issue open for future investigation is to develop robust sub-

sampling methods. Most of the existing subsampling methods require that the model is

correctly specified. Practically, however, the true underlying model is almost always un-

known to practitioners. The subsampling method derived from a postulated model may

generate unacceptable results when the model is misspecified. Thus, how to improve the

robustness of subsampling methods is an essential topic for future investigation.
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