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ABSTRACT ARTICLE HISTORY

Subsampling methods aim to select a subsample as a surrogate for the observed sample. Such methods Received September 2021
have been used pervasively in large-scale data analytics, active learning, and privacy-preserving analysis in Accepted May 2022
recent decades. Instead of model-based methods, in this article, we study model-free subsampling meth-
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ods, which aim to identify a subsample, that is, not confined by model assumptions. Existing model-free
subsampling methods are usually built upon clustering techniques or kernel tricks. Most of these methods
suffer from either a large computational burden or a theoretical weakness. In particular, the theoretical
weakness is that the empirical distribution of the selected subsample may not necessarily converge to
the population distribution. Such computational and theoretical limitations hinder the broad applicability
of model-free subsampling methods in practice. We propose a novel model-free subsampling method
by using optimal transport techniques. Moreover, we develop an efficient subsampling algorithm, that is,
adaptive to the unknown probability density function. Theoretically, we show the selected subsample can
be used for efficient density estimation by deriving the convergence rate for the proposed subsample kernel
density estimator. We also provide the optimal bandwidth for the proposed estimator. Numerical studies on

Density estimation; Inverse
transform sampling; Optimal
transport; Star discrepancy;
Subsampling

synthetic and real-world datasets demonstrate the performance of the proposed method is superior.

1. Introduction

A subsampling problem can be described as follows: given a d-
dimensional sample {x;}__, generated from an unknown proba-
bility distribution, the goal is to take a subsample {x]}]_,,r < n,
as a surrogate for the original sample. In recent decades, the
subsampling problem has drawn great attention in machine
learning, statistics, and computer science. For example, sub-
sampling methods are used pervasively in optimal design/active
learning problems, where in a large sample of unlabeled data, the
goal is to select an informative subsample to label (Settles 2012).
Consider privacy-preserving analysis as another example. In
some applications, subsampling methods have the potential to
enhance data security (Nissim, Raskhodnikova, and Smith 2007;
Li, Qardaji, and Su 2012). Specifically, a carefully selected subset
of data can reveal little confidential information (Shu, Yao, and
Bertino 2015). Last but not least, subsampling methods are also
widely applied in algorithm design to alleviate the computa-
tional burden in large-scale data analysis (Tsai et al. 2015; Zhou
etal. 2017).

Many existing subsampling methods are model-based meth-
ods, which assume predictors and responses, if any, follow a pos-
tulated model. These methods aim to select an informative sub-
sample that benefits model-fitting and prediction. Various mod-
els have been considered in subsampling problems, including

linear regression (Drineas, Kannan, and Mahoney 2006; Drineas
etal. 2011; Ma, Mahoney, and Yu 2014, 2015; Ma and Sun 2015;
Wang, Yu, and Singh 2017; Meng et al. 2017; Zhang, Xie, and
Ma 2018; Ma et al. 2020; Li and Meng 2020), generalized linear
regression (Wang, Zhu, and Ma 2018; Ai et al. 2021a; Yu et al.
2022), I, regression (Dasgupta et al. 2009), quantile regression
(Ai et al. 2021D), streaming time series model (Xie et al. 2019),
Gaussian mixture model (Feldman, Faulkner, and Krause 2011),
nonparametric regression (Meng et al. 2020b, 2022), among
others (Bardenet, Doucet, and Holmes 2017; Quiroz et al. 2019;
Yu and Wang 2022). While model-based subsampling methods
have already yielded impressive achievements, the key to the
success of these methods highly depends on the correct model
specification. Nevertheless, in practice, model specification is a
trial and error process, and a postulated model for the data could
be misspecified. For example, in supervised learning, we start
with a high dimensional model with numerous features; and by
using model selection, we may end up with a low dimensional
model with parsimonious features. In another instance, we may
start with a linear regression model for a continuous response;
and by discretizing the response, we may end up with a clas-
sification model. Model-based subsampling methods, however,
may result in subsamples hampering such dynamic processes
of model specification (Tsao and Ling 2012). Consequently, in
scenarios when the model may be misspecified or in the stage
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of exploratory analysis, more preferred methods are model-free
subsampling methods, which can identify a subsample, that is,
not confined by model assumptions.

Recently, there have been emerging model-free subsampling
methods, which aim to select a representative subsample
that can capture the overall patterns of the observed sample.
These methods can be divided into two classes: clustering-
based approaches and kernel-based approaches. Clustering-
based approaches, which are usually used in unsupervised
learning methods, include k-medoids method (Kaufman and
Rousseeuw 1987; Park and Jun 2009), k-center method (Feder
and Greene 1988), and Wasserstein barycenter method (Agueh
and Carlier 2011; Cuturi and Doucet 2014). The k-medoids
method is closely related to the k-means algorithm, and the k-
center method is used extensively in fast multipole methods
(Greengard and Strain 1991; White et al. 1994; Yang et al.
2003; Lee and Gray 2009). The Wasserstein barycenter method
aims to find the barycenter of a set of empirical probability
measures under the optimal transport metric, and such a
barycenter itself can be regarded as a representative subsample.
Despite wide applications of these subsampling methods, the
empirical distributions of the selected subsamples, yielded
by these clustering-based approaches, may not resemble the
probability distribution of the original sample. That is, as the
subsample size increases, the probability distributions of the
subsample identified by these methods may not necessarily
converge to the true probability distribution. To address such
a limitation, researchers developed kernel-based approaches,
which aim to select a subsample that can effectively approximate
the population distribution. These approaches include the
kernel herding method (Chen and Zhang 2014), the coreset
for kernel density estimation (Phillips 2013; Zheng et al. 2013,
2017), and the support point method (Mak and Joseph 2018).
Despite the theoretical benefits, one limitation of these kernel-
based approaches is that they may result in a large computational
burden in large-scale data analysis.

To overcome the computational and theoretical limitations
of the aforementioned methods, we propose a novel model-free
subsampling method, that is, computationally efficient and
enjoys nice theoretical properties. The proposed method
combines the techniques of optimal transport and space-filling
designs. In particular, we first transform the observed sample
to be uniformly distributed on a hypercube using optimal
transport techniques (Villani 2008; Peyré et al. 2019), then
select a set of data points that can effectively represent the
uniform distribution using space-filling designs (Owen 2003;
Fang, Li, and Sudjianto 2005). The desired subsample is the
one corresponding to the selected data points. The idea is
analogous to an inverse procedure of the inverse transform
sampling technique, which transforms a uniformly distributed
sample to a sample that follows an arbitrary probability density
function. Theoretically, we show the proposed subsample
kernel density estimator converges to the true probability
density function under mild conditions. Moreover, we show the
proposed estimator converges faster than the estimator based
on a randomly selected subsample, suggesting the proposed
method can be used for efficient density estimation. We also
provide the optimal bandwidth for the proposed estimator.
Numerically, using projection-based optimal transport methods
(Pitie, Kokaram, and Dahyot 2005; Rabin et al. 2011), the

computational cost for the proposed method is at the order
of O(nlog(n)dz) for a d-dimensional sample of size n. The
proposed method thus is scalable to datasets with large n
and moderate d. Numerical studies on synthetic and real-
world datasets demonstrate the superior performance of the
proposed method in comparison with mainstream competitors.
The proposed method is implemented in an R package, named
SPARTAN.

2. Preliminaries
2.1. Star Discrepancy and Space-Filling Designs

The proposed method is developed upon the notion of star
discrepancy, which is a classical metric that measures the dis-
crepancy between a set of discrete data points and the uni-
form distribution on the unit hypercube [0,1]%, denoted by
U0, 1]¢ (Niederreiter 1992; Fang and Wang 1993; Fang, Li, and
Sudjianto 2005). Let 1{-} be the indicator function and a =
(a1,...,a3) € [0,1]% be a vector. Let [0,a) = ]‘[]‘.’:1[0, a;) be
a hyper-rectangle and U, = {u;}]_, be a set of r data points in
[0, 1]. We introduce the definition of the star discrepancyin the
following.

Definition 1. Given U, and a hyper-rectangle [0, a), a € [0, 119,

the corresponding local discrepancy is defined as, D(U;,a) =

I3 Hu € [0,0)) — ]_[J‘i:1 ajl. The star discrepancy is

r

defined as

D*U,) = sup DU,,a).

ae[0,1]9

Definition 1 suggests a set of data points f,, which can
effectively represent UJ0, 114, has a small value of D*(4,), and
vice versa. There exist methods that generate design points via
directly minimizing the star discrepancy, and these methods
are called uniform design methods (Fang, Li, and Sudjianto
2005). Despite wide applications, most of these methods are
computationally expensive and are not scalable to a design with
a large number of points. To alleviate such a computational
burden, methods yielding a set of design points with a relatively
small star discrepancy could be used as alternatives for uniform
design methods. These alternatives include space-filling design
methods (Wu and Hamada 2011; Fang, Li, and Sudjianto 2005)
and low-discrepancy sequences (Owen 2003; Lemieux 2009;
Dick, Kuo, and Sloan 2013; Leobacher and Pillichshammer
2014). The former aims to generate a set of design points that
spread out over the domain as uniformly as possible. The lat-
ter sequentially generates the design points, which achieve an
asymptotically fast decay rate respecting the star discrepancy.
Consequently, these methods provide powerful tools to generate
a set of representative design points in terms of U[0, 1]°.

We now discuss the theoretical property of space-filling
designs and low-discrepancy sequences in terms of the star
discrepancy (Owen 2003). For a Sobol sequence S, = {s;}]_,,a
representative of low-discrepancy sequences, D*(S;) converges
to zero at the rate of O(log(r)d /). In other words, the
convergence rate of D*(S,) is of the order O(r—1=9) for an
arbitrary small § > 0 and fixed d, as r goes to infinity. For
comparison, when a set of data points X, = {x;}]_, is randomly



generated from UJ0, 114, the convergence rate of D*(X,) is
of the order O((loglog(r)/ r)1/2), which is much slower than
o@r—1-9) (Chung 1949). By adopting a method which is no
worse than the Sobol sequence, in this article, we always assume
the star discrepancy D*(S,) converges to zero with the rate
O(r~(1=9). There also exist some space-filling designs that can
achieve a potentially faster convergence rate in terms of star
discrepancy (Fang, Li, and Sudjianto 2005).

Using space-filling design techniques, we propose a simple
algorithm to select a representative subsample from a sample,
that is, generated from U[0, 1]%. Let {u;};_, be such a sample.
The proposed algorithm, summarized in Algorithm 1, combines
space-filling design techniques and the one-nearest-neighbor
approximation.

Algorithm 1 Select a representative subsample from a sample
generated from UJ[0, 174

Step 1. Generate a set of space-filling design points {s;}]_,
€ [0,1%
Step 2. Fori=1tor
Select the nearest neighbor for s; from {u;}
Euclidean distance
Let u} be the selected data point
Step 3. The final subsample is given by U = {u}}]_,

n

i, using the

Lemma 1 below, which is first stated in Meng et al. (2020b),
characterizes the approximation error of the subsample selected
by Algorithm 1. This lemma suggests the selected subsample can
effectively approximate the design points in the sense that their
corresponding star discrepancies are almost at the same order
under certain conditions.

Lemma 1. Let S, = {s;}]_; € [0, 114 be a set of design points
which satisty D*(S;) = O(r=1=9) for any arbitrary small § >
0,as r — 00. Suppose d is fixed, when r = O(n'/9), as n — o0,

we have D*(U}) = Op(r’(l"s)).

Algorithm 1 can be extended to the case that the cumu-
lative distribution function F of the samples is nonuniform
when d = 1. The idea is analogous to the classical inverse
transform sampling method (Devroye 1986; Mosegaard and
Tarantola 1995). Let {x;}!_; € R be the observed sample, we
first calculate {F(x;)}}_;, from which, we then select a subsam-
ple {F(x})};_, using Algorithm 1. Notice that the transformed
sample is uniformly distributed on [0, 1]; thus, the selected sub-
sample is relatively representative of U[0, 1]. Finally, the desired
subsample is given by {x]}]_,. Although this simple strategy
works well in practice, a limitation of such a strategy is that
it is inapplicable when d > 2 !. To overcome the limitation,
we introduce the optimal transport map, which serves as a
surrogate for F in multivariate cases. This idea is similar to the
one in Chernozhukov et al. (2017), where the authors used the
optimal transport map to extend the concepts of quantiles and

'One exception is that when all the covariates of the sample are inde-
pendent with each other, in which case one can directly calculate the
multivariate cumulative distribution function as the product of all the
one-dimensional marginal cumulative distribution function. Nevertheless,
independent covariates are rarely the case in practice.
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ranks from one-dimensional samples to multivariate samples.
Analogously, in this article, we use the optimal transport map to
extend the technique of inverse transform sampling from one-
dimensional cases to high-dimensional cases.

2.2. Optimal Transport Maps

Optimal transport maps have been extensively used as a
standard technique to transform one probability distribution
to another. Recently, such maps have received a significant
attention in machine learning and computer science (Ferradans
et al. 2014; Rabin, Ferradans, and Papadakis 2014; Su et al. 2015;
Courtyetal. 2017; Meng et al. 2020a; Peyré et al. 2019), due to its
close relationship with generative models, including generative
adversarial nets (Goodfellow et al. 2014), the “decoder” network
in variational autoencoders (Kingma and Welling 2013), among
others.

Instead of introducing the general definition of the optimal
transport map, we now present a specific map of our inter-
est, and we refer to Villani (2008); Peyré et al. (2019); Zhang,
Zhong, and Ma (2021) for more details. Let u be the uniform
probability distribution on [0, l]d. Let px and Q C RY be the
probability distribution and the domain of the random variable
X, respectively. Let # be the push-forward operator, such that
for all measurable B C Q, we have ¢«(px)(B) = px(¢~'(B)).
Among all the maps ¢ : & — [0, 1] such that ¢4 (py) = u and
é; '(u) = px, the optimal transport map ¢* of our interest is
the one that minimizes the L; cost, [o [ X — ¢(X) |>dpx, where
|| - || denotes the Euclidean norm. We focus on L, cost in this
article for simplicity and it is possible to consider other costs
as long as the optimal transport map exists. For the L, cost, as
a special case, when Q@ = R and d = 1, it is known that ¢*
is equivalent to the cumulative distribution function F (Villani
2008). This fact motivates us to use the ¢* as a surrogate for F
in high-dimensional cases.

To obtain the desired optimal transport map that maps the
observed sample to be uniformly distributed on [0, 114, we
propose to first generate a synthetic sample from U[0, 1], then
calculate the optimal transport map from the observed sample
to the synthetic sample. One can use the auction algorithm or
the refined auction algorithm to calculate such a map (Bertsekas
1992; Schuhmacher et al. 2020). Despite the effectiveness, the
auction algorithm has an average computational cost of the
order O(n?), and thus it may incur an enormous computational
cost when # is large. To alleviate the computational burden,
in practise, we propose to approximate the optimal transport
map ¢* using projection-based methods (Pitié, Kokaram, and
Dahyot 2007; Bonneel et al. 2015; Rabin et al. 2011; Meng
et al. 2019; Zhang et al. 2022). These methods tackle the prob-
lem of estimating a d-dimensional optimal transport map iter-
atively by breaking down the problem into a series of sub-
problems. Each of the subproblems involves finding a one-
dimensional optimal transport map between the projected sam-
ples, and such a subproblem can be easily solved through sorting
algorithms.

3. Main Algorithm

We develop a novel subsampling method named SPARTAN,
which integrates space-filling design techniques and optimal
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transport methods. The proposed method works as follows.
First, we transform the observed sample, denoted by {x;}} ;,
to be uniformly distributed on [0, 1]%. We achieve this goal by
using the empirical optimal transport map. Here, the empiri-
cal optimal transport map is also called the optimal matching
between two discrete distributions, such that each of them have
natoms and each atom has weight 1/n. We use such an empirical
optimal transport map as a surrogate of the optimal transport
map between the underlying population density function of the
observed sample and the uniform distribution. We then select
a set of data points of size r from the transformed sample using
Algorithm 1. The subsample corresponding to the selected data
points is the final output. We summarize the algorithm below.

Algorithm 2 Space-filling after optimal transport (SPARTAN)

Step 1. Generate a synthetic random sample {u;}} ; from
ulo, 11

Step 2. Calculate the empirical optimal transport map, denoted
by ¢, that maps the observed sample {x;}}! | to the
synthetic sample {u;}} R

Step 3. Calculate the transformed §§mple {qb(x,')}?zl\

Step 4. Select a set of data points {¢(x])}7_, from {¢(x;)}},
using Algorithm 1

Step 5. The final subsample is given by {x7}]_,.

Figure 1 illustrates Algorithm 2 using a toy example. A two-
dimensional synthetic sample of size 1000, marked as grey dots,
is shown in Figure 1(a). We first transform the sample to be
uniformly distributed on [0, 1]* using the projection pursuit
Monge map method (Meng et al. 2019), shown in Figure 1(b).
We then generate 32 design points using a space-filling design
method (Owen 2003; Fang, Li, and Sudjianto 2005). The design
points are marked as triangles in Figure 1(c). Next, for each
design point, we search for its nearest neighbor, labeled as black
dots in Figure 1(c). Finally, the subsample corresponding to the
selected data points, marked as black dots in Figure 1(d), gives
the desired subsample.

The computational cost for Algorithm 2 mainly incurs
in Step 2 and Step 4. In particular, we use a projection-
based method to approximate the desired optimal transport
map in Step 2, requiring a computational cost of the order
O(nlog(n)d?*) (Pitié, Kokaram, and Dahyot 2007; Bonneel et al.
2015; Meng et al. 2019). Step 4 includes two sub-steps: generat-
ing the design points and searching the corresponding nearest
neighbors. The design points can be generated beforehand;
thus, the computation time for generating these points is not
considered here. For searching the nearest neighbors, we opt to
use the k-d tree method, whose computation cost is at the order
of O(nlog(n)) (Bentley 1975; Wald and Havran 2006). In sum,
the overall computational complexity for Algorithm 1 is at the
order of O(nlog(n)d?).

Figure 2 visualizes the subsamples (black dot) selected by the
proposed method (lower row) compared with the subsamples
selected by the random subsampling method (upper row). The
two-dimensional samples (grey dots) are generated from three
different distributions: the standard Gaussian distribution (left
column), a mixture Gaussian distribution (middle column), and

a mixture beta distribution (right column). From plots in the left
column, one can observe that the randomly selected subsample
is far from symmetric. From plots in the middle and the right
columns, one can see that some peaks in the probability distribu-
tion are largely overlooked by the random subsampling method.
We observe that the subsamples identified by the proposed
method have a more robust and appealing visual representation
of the corresponding probability distribution in all the cases.

4. Theoretical Results

In this section, we study the theoretical properties of the sub-
samples obtained in Algorithm 2. In particular, we develop
an asymptotic theory concerning the rates of convergence of
the estimated density to the true density as the sample size
goes to infinity. The rates are calculated in terms of the point-
wise mean squared error (MSE) that defined as MSE(p(z)) =
E{p(z) — p(2)}*, where z € R4, D is the density estimator and
p is the true density. The density is estimated using the widely
used kernel density estimation method. Throughout this article,
we consider the Gaussian kernel. The extension of the main
theorem to other kernel functions is straightforward, as long
as such a kernel function satisfies some regularity conditions,
which are relegated to the Supplementary Material. A more in-
depth discussion on different choices of kernel functions can be
found in Scott (2015). To avoid trivial cases, we consider the case
that d > 2 in this section. Without loss of generality, we assume
the points {x;} are distinct, and the points {u;} are distinct. In
such cases, the optimal transport map in Step 2 of Algorithm 2 is
aone-to-one map from {x;}__, to {u;}}_ ;. Let p be the probability
density function to be estimated. Two widely used regularity
conditions for p are required in kernel density estimation,

+ Condition (a). 3%p(z2)/ szz is absolutely continuous, for j =
1,...,d;

« Condition (b). 83p(z)/82j3 is square-integrable, for j =
L...,d

Let X € R"™ be the sample matrix, where the (i, j)th
element is x;;, and X* € R4 be the subsample matrix, where
the (4,j)th element is x;‘ Let h > 0 be the bandwidth and

K : R — R be a kernel function. For any z € R, the full-
sample product kernel density estimator can be written as

n d

p@ =) | [IKx{G—xp/n}/n| /n. (1)

i=1 | j=1

Equation (1) can be generalized to a more general multivari-
ate kernel density estimator. In particular, for a d x d nonsingular
bandwidth matrix H and a multivariate kernel function K :
R — R, a general multivariate kernel estimator can be written
as

n

ﬁgeneral(z) = [IC {Hfl(z — xl-)}] . 2)

nH]| 4
i=1
It is apparent that Equation (2) is equivalent to Equation (1)
when H = h - I;, where I; is the identity matrix. Let }C be
the Gaussian kernel in Equation (2), it is equivalent to choose
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Figure 1. lllustration for Algorithm 2. The two-dimensional sample, marked as gray dots in panel (a), is first transformed to be uniformly distributed on [0, 1]2, shown in
panel (b). We then generate a set of space-filling design points, marked as triangles, and search for the nearest neighbor for each of them, marked by black dots in panel

(). Panel (d) shows the subsample corresponding to the selected data points.
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Figure 2. Subsamples (black dots) selected by the proposed method (lower) versus randomly selected subsamples (upper). Contours (black) are superimposed. One can
observe the proposed method selects subsamples that have more appealing visual representation of the corresponding population.

K = N(,X) with H = I or to choose X = N(0,1)
with H = X£1/2 in Equation (1). Consequently, with a properly
chosen kernel function, one can reformulate a general multivari-
ate kernel estimator to a product kernel density estimator. We
thus only focus on the product kernel density estimator in this
section without loss of generality.

Analogous to Equation (1), the density estimatorf?"(z) that
computed from the subsample can be written as

r d

P@=)

i=1

K {(zj — %) /h} i
j=1
We derive the convergence rate for the mean squared error for
the proposed subsample estimator. The results are summarized
in Theorem 1 below, and the proof is relegated to Appendix.

Theorem 1. Suppose p satisfies Conditions (a) and (b). More-
over, suppose p has a compact convex domain 2 C R4, and
there exists a constant ¢ > 1 for which ¢! < p(x) < cfor any
x € Q. Whend > 2,r = O(n'/%),asn — oo and h — 0, for
any arbitrary small § > 0, we have

1
MSE(p*(2)) = O(W) + O(h*).

In particular, if h = O(r~2(1=9)/(d+6)) '\ve have
MSE(p*(2)) = O(r~81=9)/(@+6)y 3)

Theorem 1 shows the proposed subsample estimator
converges to the true probability density function. Moreover,
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Theorem 1 indicates the proposed subsampling method can be
used for efficient density estimation. Specifically, let X+ e R4
be a randomly selected subsample matrix, and p*(z) be the
corresponding subsample estimator. According to Theorem
6.4 of Scott (2015), as + = o(n) and n — 00, when h =
O(r~ 1@+ MSE(p+(z)) achieves the optimal convergence
rate O(r—4/@+4) for any z € €. Such a convergence rate
is much slower than the convergence rate in Equation (3).
Consequently, Theorem 1 indicates one can approximate
the probability density function p more efficiently using the
proposed subsample kernel density estimator, compared with
the counterpart based on a randomly selected subsample.
Consider the bandwidth h, or generally, the bandwidth
matrix H € R?*?, In practice, one can determine the value of H
through the plug-in approach or the cross-validation approach
(Duong and Hazelton 2003; Chacén and Duong 2010; Scott
2015). One limitation of these approaches, however, is that
they may result in a computational burden for the sample with
moderate or large n. To combat the computational burden, we
opt to determine the value of H using the general Scott’s rule

(Scott 2015), which suggests to use H = r~1/(@+4 « "% fora
subsample kernel density estimator that based on a subsample
of size r. Here, 3 is the empirical variance-covariance matrix for
the observed sample. Analogously, as suggested by Theorem 1,
we also consider using H = r~2/(@+6) x £/ for the proposed
estimator. Consider the essential condition in Theorem 1, which
requires the domain of p to be compact convex. Empirically, we
find the proposed estimator still works reasonably well when
such a condition does not hold, as shown in the following
section.

5. Simulation Results

To evaluate the proposed subsampling method, we compare
it with three mainstream competitors in terms of the estima-
tion accuracy of the kernel density estimator. The competi-
tors include the uniform subsampling method, also called the
random subsampling method, the k-medoids method, and the
support point method (Mak and Joseph 2018). We use the
projection-pursuit Monge map method (Meng et al. 2019) for
approximating the optimal transport map in Algorithm 2. All
the methods are implemented in R, and all the parameters are
set as default.

For each subsampling method, we first calculate the subsam-
ple kernel density estimator p(x), then evaluate the accuracy
of which using the Hellinger distance (Li, Yang, and Wong
2016), defined as 1 — >, \/p(x;)/p(x;)/n, where {x;}!__, is an
independent testing dataset generate from the same probability
density function as the training sample. Empirically, we find
other metrics, like the mean squared error considered in The-
orem 1, also yield similar performance. For the kernel density
estimator, we use the Gaussian kernel and the general Scott’s rule
(Scott 2015) to determine the bandwidth matrix. In particular,
for all the subsample estimator, the bandwidth matrix H =

G IS 2, where ¥ is the empirical variance-covariance
matrix. For the proposed method, we also consider the cases
that H = ¢2/@d+6) fl/ 2, according to Theorem 1. The
standard errors are calculated through a hundred replicates.

In each replicate, we generate a synthetic training sample with
n = 10* from d = {2,5, 10,20} and each of the following three
probability density functions,

o D1: A Gaussian distribution N (0, X), where T = 0.5/,
j=1,..,d;

e D2: A mixture Gaussian distribution
N1, X)/44+N(=1,%)/44+N(0,X)/2, where X = 0.8/,
ij=1,..d.

o D3: A mixture t-distribution, whose degree-of-freedom
equals 8,10, and 12,
t(0,%,8)/3 + t(0,X%,10)/3 + t(0,X,12)/3, where ¥ =
0.8 i,j=1,..4d.

Figure 3 shows the Hellinger distance versus different r under
various settings. Each row represents a particular data distri-
bution D1-D3, and each column represents a particular d. We
use crosses to denote the uniform subsampling method (UNIEF),
hollow circles to denote the K-medoids method (KM), hollow
triangles to denote the support point method (SP), solid circles
to denote the proposed method (SPARTAN), and solid triangles
to denote the proposed method with H = r~2/(@+6) $'/?
(SPARTAN).

Three significant observations can be made from Figure 3.
We first observe that the K-medoids method performs worse
than the uniform subsampling method in almost all cases.
Moreover, the support point method outperforms the uniform
subsampling method in all cases. We also observe the Hellinger
distance yielded by these two methods do not converge to zero
in some cases. Such an observation can be attributed to the fact
that the probability distribution of the subsample identified by
these two methods may not necessarily converge to the true
probability distribution.

Second, we observe the Hellinger distance yielded by the pro-
posed method decreases as r increases. Moreover, the proposed
method outperforms the uniform subsampling method in all
cases. These observations are consistent with Theorem 1, which
indicates the proposed subsample estimator converges to the
true probability density function and is more efficient than the
estimator corresponding to the uniform subsampling method.

Third, we observe the proposed estimator with H =

AR I outperforms the other three competitors in
most of the cases. As the same bandwidth matrices are applied in
all these estimators, such a comparison is fair. Consequently, the
aforementioned observation suggests the subsample identified
by the proposed subsampling method is more representative
of the observed sample than the subsamples selected by the
other three methods. We also observe the proposed estimator

with H = r~2/@+6) » §'/2 consistently outperforms the one

with H = r~1/@+9 5 32 This observation is consistent
with Theorem 1, which suggests h = O(r—2(1-9/(@+0)) yields
the smallest upper bound of the asymptotic integrated mean
squared error for the proposed estimator.

6. Real Data Example
6.1. Density Estimation

Throughout this section, we consider the banknote authenti-
cation dataset, which is extracted from images that were taken
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Figure 3. Simulation under different d (from left to right) and different probability density functions (from upper to lower). The Hellinger distance (H-dist) are plotted

versus different r. Vertical bars represent the standard errors.

from 1372 genuine and forged banknotes. Wavelet transform
was used to extract four features from images 2. To evaluate the
performance of the proposed subsampling method, we compare
it with other competitors in terms of the accuracy of the kernel
density estimation and the prediction accuracy in active learn-
ing. A brief introduction to active learning will be given later.

We first visualize the banknote authentication dataset and
the subsample selected by the proposed method. In Figure 4,
the lower diagonal panels show the scatter plots for each pair
of the predictors. We select a subsample of size fifty, and the
scatter plots for such a subsample are shown in the upper panels
of Figure 4. The heat maps are obtained using kernel density
estimation. We observe the selected subsample has an appealing
visual representation of the original sample.

For density estimation, we consider three competitors, as
mentioned in the previous section. Same as the settings stated
in the previous section, we used the Gaussian kernel for kernel
density estimators and the general Scotts rule to determine
the value of the bandwidth matrix. All the parameters are set
as the same as the ones we used in the previous section. We

2The dataset can be downloaded from https://archive.ics.uci.edu/ml/
datasets/banknote+authentication.

replicated the experiment twenty times. In each replication,
the dataset is randomly divided into the training set and the
testing set of equal sizes. We first calculate the full sample kernel
density estimator using the testing set, denoted by pgy. For
each subsample kernel density estimator, we then evaluate its
estimation accuracy through the empirical Hellinger distance,
definedas1—Y "7, \/p(xi) 7pfu11 (xi)/n, where {x;}}! | represents
the testing set. This empirical Hellinger distance is not a formal
distance and thus may have negative values, as we will see later.
Nevertheless, the empirical Hellinger distance can be used as a
surrogate for the true Hellinger distance since a small value of
the empirical Hellinger distance is associated with a small value
of the true Hellinger distance, intuitively.

The left panel of Figure 5 shows the empirical Hellinger
distance versus different subsample sizes r. The standard error
bars are obtained from one hundred replicates. We observe
that the uniform subsampling method consistently outperforms
the K-medoids method. We then observe that the proposed
method and the support point method perform similarly, and
both have better performance than the uniform subsampling
method. Finally, we observe the proposed estimator with H =

2@+ o T2 ag guided by Theorem 1, gives the best result.

All these observations are consistent with the findings in the
previous section.


https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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Figure 4. Visualization of the banknote authentication dataset. The lower diagonal panels show the scatter plots for each pair of predictors. The upper diagonal panels
show the scatter plots for the selected subsample using the proposed algorithm. The heat maps are obtained using kernel density estimation.

6.2. Active Learning

We now consider the task of active learning, which aims to make
an accurate prediction, with the number of labeled training
data points as small as possible (Krogh and Vedelsby 1995;
Cohn, Ghahramani, and Jordan 1996). These approaches are
essential for numerous sophisticated supervised learning tasks,
where the labeled instances are challenging, time-consuming,
or expensive to obtain. Take speech recognition as an exam-
ple; accurate labeling of speech utterances is extremely time-
consuming and requires trained linguists. It is reported that
annotation at the level of the phoneme can take 400 times
longer than the actual audio (Settles 2012). In general, active
learning approaches select the data points (also termed as the

query points) iteratively and interactively. In each iteration, one
query the oracle to obtain the label at a new query point, based
on certain criteria. It is known that a representative subsample
is potentially associated with an accurate prediction in active
learning (Settles 2012).

The proposed subsampling method can be cast as an active
learning approach. In particular, we generate the Sobol sequence
(Owen 2003) in Algorithm 1 and select the query points sequen-
tially in Algorithm 2. To evaluate the performance of the pro-
posed method, we compare it with the following baseline meth-
ods: (1) random sampling (RANDOM), (2) query by committee
(COMMITTEE), which select query points that maximize the
disagreement among different models (Settles 2012), and (3)
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margin-based method (MARGIN) which choose query points
that lie on the margin of the decision line (Schohn and Cohn
2000).

We replicate the experiment a hundred times on the
banknote dataset. In each replication, the dataset is randomly
divided into the training set and the testing set of equal sizes.
We evaluate the classification model by its mean classification
accuracy on the testing set. The classification accuracy is defined
as (TP + EN) /n, where n denotes the size of the testing set, and
TP and FN denote true positive and false negative, respectively.
We use the support vector machine, implemented by the R
package e1071 (Meyer et al. 2015), for classification in the
active learning. The RBF kernel with default parameters is
applied. The size of query points ranges from 10 to 200. For
the committee method and the margin-based method, which
require several initial labeled data points as input, ten data
points are randomly selected and labeled.

The right panel of Figure 5 shows the mean classification
accuracy of different active learning methods versus different
numbers of query points. The vertical bars represent the stan-
dard errors. These bars, however, are almost invisible due to
extremely small values of standard errors. We observe the pro-
posed method consistently outperforms all the competitors.
We attribute such an observation to the fact that the proposed
method selects a representative subsample in a sequential way,
resulting in a more accurate prediction in active learning.

7. Discussion

In this article, we proposed a novel model-free subsampling
method, using the space-filling design and optimal transport
techniques. The proposed algorithm is efficient and can
be adaptive to the unknown probability density function.
Theoretically, we show the proposed subsample kernel density
estimator converges to the true probability density function
under mild conditions. The order for the optimal smoothing
parameter for the proposed kernel density estimator is also
derived. The superior performance of the proposed method
over mainstream competitors was justified by various numerical
experiments.

In this article, we mainly focus on using the unit cube as the
target distribution due to mathematically simplicity. In practise,
itis possible to consider standard Gaussian distribution instead.
Specifically, we could generate the random sample from the
standard Gaussian distribution in Algorithm 2, and use the
Gaussian Sobol sequence instead of the space-filling design
points in Algorithm 1. The other steps remain the same. Empir-
ical results show such a scheme may lead to slightly better
performance. The proposed method has the potential to be
applied to many large-sample applications, including but not
limited to nonparametric regression, kernel methods, and low-
rank approximation of matrices. This work may speed up these
researches with theoretical guarantees.
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