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Abstract

Optimal transport (OT) methods seek a transformation map (or plan) between

two probability measures, such that the transformation has the minimum

transportation cost. Such a minimum transport cost, with a certain power

transform, is called the Wasserstein distance. Recently, OT methods have

drawn great attention in statistics, machine learning, and computer science,

especially in deep generative neural networks. Despite its broad applications,

the estimation of high-dimensional Wasserstein distances is a well-known

challenging problem owing to the curse-of-dimensionality. There are some

cutting-edge projection-based techniques that tackle high-dimensional OT

problems. Three major approaches of such techniques are introduced, respec-

tively, the slicing approach, the iterative projection approach, and the projec-

tion robust OT approach. Open challenges are discussed at the end of the

review.
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1 | INTRODUCTION

Consider the resource allocation problem as shown in Figure 1. Suppose that we have n mines mining iron ore and m
factories. Each factory has a certain demand for the iron ore that the mines produce. We assume that the total amount
of the iron ore produced by the mines equals the total demand for which in the factories. The goal is to move all the
iron ore from mines to factories, such that the total transport cost is minimized, under the condition that the demand
for every factory could be successfully met.

In the 18th century, French mathematician Gaspard Monge (1746–1818) first formulated such a resource allocation
problem as a mathematical problem. In particular, he regarded the resources and the demands as two probability mea-
sures, denoted by μ and ν, respectively. Of interest is to seek a transport map (or plan) between μ and ν with the mini-
mum transport cost. Such a minimum transport cost, with a certain power transform, is called the Wasserstein distance
between μ and ν. The problem of finding such a transport map (or plan) is called the optimal transport (OT) problem
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and has long been studied in mathematics and operational research (Villani, 2008). Formal definitions for the transport
map, the transport plan, and the Wasserstein distance are provided in Section 2.

During recent decades, OT methods have been reinvigorated in a remarkable proliferation of modern data science
applications. Many statistical and machine learning problems can be recast as finding the OT map between two mea-
sures. For example, the deep generative models aim to seek a transformation that maps a fixed distribution, for exam-
ple, the standard Gaussian or uniform distribution, to the underlying population distribution of the observed sample
(Arjovsky et al., 2017; Y. Chen et al., 2018; Goodfellow et al., 2014; N. Lei et al., 2019; Meng et al., 2019). Another exam-
ple is the problem of domain adaptation, which aims to learn a well-trained model from a source data distribution and
transfer this model to adopt a target data distribution (Courty et al., 2016; Muzellec & Cuturi, 2019). Due to the flexibil-
ity in practical applications, OT methods have recently drawn great attentions in various machine learning tasks, for
example, density estimation (Canas & Rosasco, 2012; Weed & Berthet, 2019), dictionary learning (Cazelles et al., 2018;
Rolet et al., 2016; Schmitz et al., 2018; Seguy & Cuturi, 2015), clustering (Flamary et al., 2018; Lin, Ho, et al., 2020;
Meng, Yu, et al., 2020; Staib et al., 2017), kernel methods (Carriere et al., 2017; Jagarlapudi & Jawanpuria, 2020), fair
machine learning (Black et al., 2020; Gordaliza et al., 2019), structural data analysis (Xu, 2020; Xu et al., 2021; Xu
et al., 2022; Xu, Luo, & Carin, 2019; Xu, Luo, Zha, & Duke, 2019), and generative models (An et al., 2020; Meng
et al., 2019). In addition, OT methods are widely applied in statistics, for example, two-sample testing (Ramdas
et al., 2017), statistical inference (Bigot et al., 2019; Del Barrio et al., 2019; Klatt et al., 2020; Kroshnin et al., 2021;
Tameling & Munk, 2018; Zemel et al., 2019), and regression analysis (Hütter & Rigollet, 2021; Janati et al., 2020;
Rigollet & Weed, 2019). Last but not least, OT methods also find many applications in computer science, for example,
natural language processing (Alaux et al., 2018; L. Chen et al., 2019; Grave et al., 2019; Singh et al., 2020; Z. Wang
et al., 2020; Xu et al., 2018; Yurochkin et al., 2019), computer vision (Alvarez-Melis et al., 2018; Feydy et al., 2017; Seguy
et al., 2018; Solomon et al., 2016; W. Wang et al., 2021), computer graphics (Cui et al., 2019; Lavenant et al., 2018), deep
learning (Adler & Lunz, 2018; Arjovsky et al., 2017; Hashimoto et al., 2016; Lim et al., 2020; Montavon et al., 2016;
W. Wang et al., 2021), as well as other domain sciences (Dai Yang et al., 2020; Del Barrio et al., 2020; Schiebinger
et al., 2019; Tong et al., 2020). We refer to Peyré et al. (2019), Panaretos and Zemel (2019), and Zhang et al. (2020) for
recent reviews.

Although OT methods find a large number of applications in practice, the estimation of the empirical optimal trans-
port plan (OTP) and the corresponding Wasserstein distance suffers from the “curse-of-dimensionality” in high-
dimensional spaces (Fournier & Guillin, 2015; Panaretos & Zemel, 2019). Suppose that we observe two d-dimensional
samples of size n. It was first shown in Dudley (1969) that, in general cases such that the measure is absolutely continu-
ous with respect to (w.r.t.) Lebesgue measure, the empirical Wasserstein distance between these two samples converges
to its population counterpart roughly at the rate of O n�1=d

� �
when d≥ 2; see Fournier and Guillin (2015), Panaretos

and Zemel (2019), Weed and Bach (2019), J. Lei et al. (2020) and the reference therein for further discussion. Such a
convergence rate is in a sense disappointing, as it indicates that the empirical Wasserstein distance hardly converges to
its population counterpart when the dimension d is moderate or large. Fortunately, Weed and Berthet (2019) showed
that the convergence rate of the empirical Wasserstein distance could be improved if the “implicit dimension” k is
much smaller than d. Here, we call two d-dimensional measures μ and ν have implicit dimension k if they differ only
on a k-dimensional subspace. In such cases, loosely speaking, the convergence rate of the empirical Wasserstein dis-
tance could be improved from O n�1=d

� �
to O n�1=k

� �
. Therefore, finding an informative low-dimensional subspace is

essential for obtaining accurate estimations of Wasserstein distance and OTPs in high-dimensional space.

FIGURE 1 An illustration of the resource allocation problem
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Following this line of thinking, there has been a large number of studies dedicated to developing projection-based
methods for OT problems in recent decades. These methods can be roughly categorized into three classes, that is, the
slicing approach, the iterative projection approach, and the projection robust OT approach. In this article, we will pre-
sent the details of these three main approaches. We will also introduce the variants of these approaches as well as their
applications. The rest of the article is organized as follows. We start in Section 2 by introducing the essential back-
ground of the OT problem. We then roughly introduce three classes of projection-based techniques that tackle high-
dimensional OT problems. Details of the slicing approach and its variants, the iterative projection approach, and the
projection robust OT approach are provided in Sections 3, 4, and 5, respectively. Section 6 summarizes the review and
discusses some open areas.

2 | PROBLEM FORMULATION

In this section, we first introduce the problem setup of the OT problems. Next, two popular formulations of such prob-
lems are presented, that is, the Monge formulation and the Kantorovich formulation. The Monge formulation is more
intuitive; however, it suffers from certain limitations in practice. Such limitation can be overcome by the Kantorovich
formulation. Finally, we introduce the notion of Wasserstein distance, followed by the computational issues of solving
the OT problems.

2.1 | OT problems and Monge formulation

Different from the resource allocation problem, now let us consider another example to motivate the OT problem. Sup-
pose that we want to move a large pile of sand using a shovel. The goal is to construct a particular shape, say a san-
dcastle, using the sand. Naturally, we wish the total “effort” to be as small as possible. The effort, intuitively, can be
regarded as the “work” in the sense of physical, that is, the product of force and displacement. Here, the sand and the
sandcastle can be regarded as two probability measures, denoted by μ and ν, respectively. The process of constructing
the sandcastle using the sand, roughly speaking, can be regarded as applying a “transport map” on μ that transports μ
to ν. Note that such a transport map may not have to be a one-to-one map, as will be detailed later. Among all possible
transport maps, the goal is to find the one with the minimum transport cost, as we wish to minimize the total effort.
The problem of finding such a transport map is called the OT problem.

Mathematically, one can formulate the OT problem as follows. Considering the set of all Borel probability measures
in ℝd, denoted by P ℝd

� �
, and let

P2 ℝd
� �¼ μ�P ℝd

� �jZ xk k2dμ xð Þ<∞
� �

:

Let μ and ν be two measures such that μ,ν�P2 ℝd
� �

. Let # denote the push-forward operator, such that for any
measurable Ω�ℝd, one has ϕ# μð Þ Ωð Þ¼ μ ϕ�1 Ωð Þ� �

. A measureable map ϕ :ℝd!ℝd is called the measure-preserving
map between μ and ν if ϕ# μð Þ¼ ν and ϕ�1# νð Þ¼ μ: Let Φ μ,νð Þ be the set of all such measure-preserving maps. Among
all the maps in Φ μ,νð Þ, the optimal transport map (OTM) is defined as

ϕ† ≔ arginf
ϕ � Φ μ,νð Þ

Z
ℝd
c x,ϕ xð Þð Þdμ xð Þ: ð1Þ

Here, c � , �ð Þ is the cost function, and one popular choice of which is the squared Euclidean cost, that is,
c x,yð Þ¼k x� yk2. Throughout this review, we mainly focus on the OT problems w.r.t. this cost. Solving the OT problem
w.r.t other choices of cost functions, especially the concave ones, is still an active research area. We refer to
Villani (2008) for further details of such problems, which are beyond the scope of this review.

Applying the squared Euclidean cost to Equation (1) yields
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ϕ† ≔ arginf
ϕ � Φ μ,νð Þ

Z
ℝd
k x�ϕ xð Þk2dμ xð Þ: ð2Þ

Equations (1) and (2) are usually called the Monge formulation of the OT problem, and their solution ϕ† is called
the OTM or the Monge map. One limitation of the Monge formulation, however, is that its solution may not exist. For
example, consider the scenario when ν is the standard Gaussian distribution, and μ is the delta-Dirac distribution, that
is, the Dirac measure on a single point. Under such a scenario, there does not exist a many-to-one map that maps μ to
ν, and thus the set Φ is empty.

2.2 | Kantorovich formulation

To overcome the aforementioned limitation, Kantorovich (1942) reformulated the OT problem as finding a certain joint
distribution of μ and ν instead of finding a transport map between these two. In particular, Kantorovich (1942) consid-
ered a family of the joint distribution of μ and ν, termed as the “coupling” π, such that two particular marginal distribu-
tions of π are equal to μ and ν, respectively. Let Π be the set of all such couplings, which can be defined as

Π μ,νð Þ¼ π �P ℝd�ℝd
� �

s:t: 8 Borelset A,B�ℝd, π A�ℝd
� �¼ μ Að Þ, π ℝd�B

� �¼ ν Bð Þg:� ð3Þ

Kantorovich stated that solving the OT problem (w.r.t. the squared Euclidean distance) is equivalent to finding the
optimal coupling, defined as

π�≔ arg inf
π � Π μ,νð Þ

Z
k x� yk2dπ x,yð Þ: ð4Þ

Equation (4) is usually called the Kantorovich formulation of the OT problem, and its solution π� is called the OTP.
The Kantorovich formulation enjoys several advantages over the Monge formulation. First, the solution of the

Kantorovich formulation is a joint distribution that lies in the nonempty family Π, and thus always exists. Second, the
Monge formulation is a highly nonlinear program that is relatively complicated to solve, while the Kantorovich formu-
lation can be solved effectively using linear programming techniques. In particular, for two discrete distributions
defined on n points, the Kantorovich OT problem can be solved within O n3lognð Þ computational time using classic lin-
ear programming techniques (Peyré et al., 2019). Last but not least, the Kantorovich formulation allows the mass to
split from a source toward several targets and thus is more practical.

Recall the resource allocation problem at the beginning of this review. It may be unrealistic to assume that there
always exists a one-to-one or many-to-one map between mines and factories, which can meet all the demands of the
factories. Instead, a practical solution should allow the delivery of the iron ore from one mine to multiple factories.
Such a solution can be regarded as an OTP.

Although the Kantorovich formulation is more flexible than the Monge formulation, the celebrated Brenier theorem
(Brenier, 1991) ensures that in ℝd for p¼ 2, if at least one of μ and ν has a density, the Kantorovich and the Monge
problems are equivalent. We refer to Remark 2.23 of Peyré et al. (2019) for more details.

2.3 | Wasserstein distance

Closely related to the OT problem is the Wasserstein distance, which is a metric that measures the discrepancy between
two probability measures. Intuitively, Wasserstein distance measures the transport cost between two measures. The
Wasserstein distance thus is also called the earth mover's distance in the literature (Levina & Bickel, 2001; Peyré
et al., 2019). Intuitively, if we regard the OT problem as an optimization problem, then the Wasserstein distance is sim-
ply the optimal objective value with a certain power transform.

In terms of the Monge formulation, the Wasserstein distance of order 2 is defined as
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W 2 μ,νð Þ≔ inf
ϕ � Φ μ,νð Þ

Z
ℝd
k x�ϕ xð Þk2dμ

� �1=2

: ð5Þ

Analogously, one can define the Wasserstein distance of order 2 w.r.t. the Kantorovich formulation as,

W 2 μ,νð Þ≔ inf
π � Π μ,νð Þ

Z
k x� yk2dπ x,yð Þ

� �1=2

: ð6Þ

As a metric that measures the discrepancy between two probability measures, Wasserstein distance enjoys several
advantages over other well-known metrics, for example, Jenson–Shannon divergence (JS-divergence) and the
Kullback–Leibler divergence (KL-divergence). Consider the case when two measures μ and ν have different nonzero
support, for example, μ and ν reside in low-dimensional manifolds without overlaps. In such a case, both JS-divergence
and KL-divergence (w.r.t. these two measures) would give constant values, no matter how far away their nonzero sup-
ports are. In other words, such commonly-used metrics may fail to capture the discrepancy between two measures
effectively. Such a limitation, which is closely related to the problem of gradient vanishing, is believed to be one of the
main reasons why the original generative adversarial net (GAN) (Goodfellow et al., 2014) suffers from an unstable
learning process. We refer to Arjovsky et al. (2017); Gulrajani et al. (2017); Tolstikhin et al. (2018) for more discussions.

Recall that the Wasserstein distance measures the discrepancy between two measures using the “transport cost.”
The Wasserstein distance thus is able to provide a reasonable discrepancy between two measures, no matter whether
they have overlapping nonzero supports or not. Recently, a large number of studies suggested utilizing the Wasserstein
distance and its variants for a more stable and robust training process in deep generative models (Deshpande
et al., 2019; Kolouri et al., 2018; N. Lei et al., 2019; Tolstikhin et al., 2018).

2.4 | Computational issues

In practice, the OTP and its corresponding Wasserstein distance can be estimated by solving a linear system. Let p and
q be two probability distributions supported on a discrete set xif gni¼1, where xi �Ω for i¼ 1,…,n, and Ω�ℝd is
bounded. In other words, p and q are two vectors located on the simplex

Δn ≔ v�ℝn :
Xn
i¼1

vi¼ 1, and vi ≥ 0, i¼ 1,…,n:
( )

,

whose entries denote the weight of each distribution assigned to the points of xif gni¼1. Let 1n be the all-ones vector with
n elements. Let C�ℝn�n be the pair-wise distance matrix, where Cij¼k xi�xjk2. Analogous to the definition of cou-
plings in Equation (3), let Π p,qð Þ denote the set of coupling matrices between p and q, that is,

Π p,qð Þ¼ P�ℝn�n : P1n¼p, PT1n¼q
� 	

:

According to the Kantorovich formulation, finding the OTP between p and q is equivalent to solving the optimiza-
tion problem

P�≔ arg min
P � Π p,qð Þ

⟨P,C⟩: ð7Þ

Here, ⟨ � , � ⟩ represents the summation of the entry-wise multiplication, such that, for any two matrix A,B�ℝn�n,
⟨A,B⟩¼Pn

i¼1
Pn

j¼1AijBij. The solution P� in Equation (7) is usually called the optimal coupling matrix. Once the
matrix P� has been calculated, the Wasserstein distance between p and q of order 2 can be simply written
as W 2 p,qð Þ¼ ⟨P�,C⟩

1=2
.
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The optimization problem in Equation (7) is a linear program with O nð Þ linear constraints. Classic linear program-
ming algorithms for solving such problems requiring a computational time of the order O n3log nð Þð Þ (Peyré et al., 2019).
Such a sizable computational cost hinders the broad applicability of OT methods in practice for datasets with large sam-
ple sizes. To alleviate the computation burden for OT problems, Cuturi (2013) considered a regularized variant of the
minimization problem in Equation (7), written as

P�η ¼ arg min
P � Π p,qð Þ

⟨P,C⟩�η�1H Pð Þ� 	
: ð8Þ

Here, η>0 is the regularization parameter, and H Pð Þ¼Pn
i¼1
Pn

j¼1Pijlog 1=Pij
� �

is the Shannon entropy of the
matrix P. We adopt the standard convention that 0log 1=0ð Þ¼ 0 in the Shannon entropy.

Cuturi (2013) showed that for a fixed η, the optimization problem (8) can be solved within O n2log nð Þð Þ computa-
tional time using the Sinkhorn algorithm. In practice, a small η is associated with a more accurate estimation of the
OTP and the Wasserstein distance. However, a small η also results in a longer computation time. Empirical studies
showed, with the help of the Sinkhorn algorithm, the regularized OT problem can be solved reliably and efficiently in
the cases when n≈ 104 (Flamary & Courty, 2017; Genevay et al., 2016). Recently, many studies are developed upon the
Sinkhorn algorithm for faster calculations (Altschuler et al., 2017, 2019; Dvurechensky et al., 2018; Lin et al., 2019). For
example, Altschuler et al. (2019) proposed the Nys-sink algorithm, which combined the Sinkhorn algorithm with the
Nyström method, a popular technique for low-rank matrix decomposition (Gittens & Mahoney, 2016; Musco &
Musco, 2017; S. Wang & Zhang, 2013; Williams & Seeger, 2001). They showed that the Nys-sink algorithm could effi-
ciently solve the regularized OT problem of the size n≈ 106 on a single laptop. We refer to Zhang et al. (2020) for more
efficient tools to solve the OT problem.

2.5 | Projection-based techniques for OT problems

Consider OT problems for two d-dimensional measures that are absolutely continuous w.r.t Lebesgue measure. The
empirical Wasserstein distance between two samples of size n is shown to converge to its population counterpart
roughly at the rate of O n�1=d

� �
(Dudley, 1969; Fournier & Guillin, 2015; J. Lei et al., 2020; Panaretos & Zemel, 2019;

Weed & Bach, 2019). Such a convergence rate implies that when the dimension d grows, the empirical Wasserstein dis-
tance hardly converges. The estimation of the empirical OTP and the corresponding Wasserstein distance thus suffer
from the “curse-of-dimensionality” in high-dimensional spaces (Fournier & Guillin, 2015; Panaretos & Zemel, 2019).
Suppose these two d-dimensional measures differ only on a k-dimensional subspace, with k much smaller than d. Intui-
tively, the convergence rate of the empirical Wasserstein distance can be improved to O n�1=k

� �
as long as the k-dimen-

sional subspace is properly estimated (Weed & Berthet, 2019). Motivated by such an idea, a large number of methods
have been developed. These methods can be roughly categorized into three classes as follows.

• The slicing approach breaks down the problem of estimating high-dimensional Wasserstein distances into a series of
subproblems, each of which solves a one-dimensional OT problem using projected samples (Bonneel et al., 2015;
Pitie et al., 2005; Pitié et al., 2007; Rabin et al., 2011). The subproblems can be easily solved since one-dimensional
OT problems admit closed-form solutions under mild conditions. The slicing approach is in some sense analogous to
the additive model (Hastie & Tibshirani, 1990; Wood, 2017), as both approaches overcome the curse-of-
dimensionality by approximating a multivariate function using the summation of a series of one-dimensional
functions.

• The iterative projection approach is similar to the slicing approach in the sense that both of them utilize the closed-
form solution of one-dimensional OT problems. Nevertheless, the main difference between them is that the one-
dimensional OT components are independent of each other in the slicing approach, while in the iterative projection
approach, these components depend on each other and are estimated sequentially. The idea of the iterative projec-
tion approach is similar to boosting (Schapire, 2003; Zhou, 2009) and projection pursuit regression (Friedman &
Stuetzle, 1981; Friedman & Tukey, 1974; Huber, 1985) in the sense that searching for the next optimal component is
based on the residual of previous ones.

• The projection robust OT approach assumes that the two underlying d-dimensional measures differ only in an
implicit k-dimensional subspace. The goal is to seek such an implicit subspace and then estimate the empirical

6 of 22 ZHANG ET AL.
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Wasserstein distance using the projected samples. In practice, such an approach seeks the k-dimensional subspace
that would maximize the Wasserstein distance between two measures after projection. Such a maximum quantity is
usually called the projection robust Wasserstein distance.

3 | SLICING APPROACH FOR OT PROBLEMS

One attractive property of the OT problem is that the OTP and the Wasserstein distance have a closed-form expression
for one-dimensional measures. In particular, considering two one-dimensional measures μ and ν, the Wasserstein
distance (of order 2) between them takes the form

W 2 μ,νð Þ¼
Z 1

0
F�1μ xð Þ�F�1ν xð Þ





 



2dx
 !1=2

, ð9Þ

where Fμ and Fν are the cumulative distribution functions (CDF) w.r.t. μ and ν, respectively. Considering two equal-
weighted one-dimensional samples, denoted by xif gni¼1 and yif gni¼1, respectively. Equation (9) indicates that the empiri-
cal Wasserstein distance between xif gni¼1 and yif gni¼1 can be simply calculated by first sorting both samples and then cal-
culating the distance between the sorted samples.

Unfortunately, the closed-form solution is not available for general high-dimensional OT problems, except for spe-
cial cases, for example, when both μ and ν are Gaussian distribution (Peyré et al., 2019; Villani, 2008). One natural idea
for tackling high-dimensional OT problems is to break them down into a series of subproblems, each of which involves
solving a one-dimensional OT problem. Such an idea motivates the slicing approach. We now start by introducing the
notion of sliced-Wasserstein (SW) distance, followed by several variants of the SW distance.

3.1 | Sliced-Wasserstein distance

Intuitively, calculating the SW distances between two measures involves two steps: (1) obtain a family of one-
dimensional representations for these two measures through linear projections, and (2) compute the average of the
Wasserstein distance between these one-dimensional representations. More formally, let d�1¼ u�ℝd :

���u���¼ 1
n o

be
the d-dimensional unit sphere, where

��� ���� represents the Euclidean norm, and ⟨ � , � ⟩ represents the Euclidean inner-
product. For any u� d�1, let u� be the linear form w.r.t. u, such that for a�ℝd, u� að Þ¼ ⟨u,a⟩. For any μ,ν�P2 ℝd

� �
,

the SW distance of order 2 between them is defined as

SW2 μ,νð Þ≔
Z

d�1
W 2

2 u�#μ,u
�
#ν

� �
dδ uð Þ

� �1=2

, ð10Þ

where δ represents the uniform distribution on d�1.
In practice, the integration in Equation (10) can be approximated using a Monte Carlo scheme. That is, one can ran-

domly and uniformly draw a finite set of projection directions from d�1, and replace the integral with a finite-sample
average (Bonneel et al., 2015; Rabin et al., 2011). Algorithm 1 summarizes the details for approximating SW distances.
Note that the for loop in this algorithm can be naturally paralleled.

Figure 2 provides a toy example for Algorithm 1. Two Gaussian distributions, μ and ν, are marked in blue and
orange, respectively. Considering two projection directions, that is, u1 and u2. The projected distributions of μ and ν w.
r.t. these two projection directions are shown as blue and yellow curves, respectively. Let D1 and D2 denote the Wasser-
stein distance between the projected distributions along u1 and u2, respectively. The SW distance between μ and ν thus
can be approximated by D2

1þD2
2

� �
=2

� �1=2
.

Algorithm 1 indicates that the empirical SW distance can be efficiently calculated in practice, as it utilizes the
closed-form expression of the Wasserstein distance between one-dimensional measures. Indeed, the computational cost
of Algorithm 1 is just O LdnþLnlog nð Þð Þ, where the number of projections L is usually set to be a constant (Bonneel
et al., 2015; Deshpande et al., 2018).
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Besides the computational benefits, recent studies show the SW distance enjoys several elegant theoretical proper-
ties. Bonnotte (2013) showed that SW is a proper metric, and the convergence w.r.t. the SW distance implies weak con-
vergence in compact domains. Deshpande et al. (2018) observed that the empirical SW distance of order two decreases
roughly at the order O n�1=2

� �
even for high-dimensional samples. Such an observation is supported by the findings in

Bernton et al. (2019) and Nadjahi et al. (2019). In particular, Nadjahi et al. (2019) characterized the asymptotic distribu-
tion of the SW distances by proving a central limit theorem and establishing a convergence rate of n�1=2. We refer to
Nadjahi et al. (2020) for more theoretical analysis of SW distances. The aforementioned theoretical findings indicate
that SW distance tends to be able to bypass the problem of curse-of-dimensionality. As a result, the SW distance has
been an increasingly popular alternative to the Wasserstein distance; see Carriere et al. (2017), Deshpande et al. (2018),
Kolouri et al. (2018), Liutkus et al. (2019); Wu et al. (2019), and Rowland et al. (2019) for some of the applications.

3.2 | Variants of SW distance

Despite the wide application, the SW distance has two major limitations. First, as the dimension d grows, the Monte
Carlo procedure in Algorithm 1 requires a larger number of projections L to achieve a decent approximation of the inte-
gration. Empirically, many studies observed that if a reasonably smooth two-dimensional distribution can be approxi-
mated using L projections, then O Ld�1� �

projections are required to approximate a similarly smooth d-dimensional
distribution for d≥ 2 (Deshpande et al., 2019; Kolouri et al., 2019). Second, Algorithm 1 only focuses on linear projec-
tions, which may be ineffective for the data that lie within a manifold. Nonlinear projections or manifold learning tech-
niques are more preferred in such cases.

To overcome such limitations, many studies have been developed to formulate novel OT metrics by generalizing the
SW distance. One of such studies proposed the max-SW distance, which aims to remedy the first limitation (Deshpande
et al., 2019). The idea is that, instead of using all the random projection directions generated from d�1, one can simply
pick the “best direction,” along which the projected distance is maximized.

Figure 3 illustrates such a best direction using a toy example. The two-dimensional source sample and the target
sample are labeled by blue dots and yellow dots, respectively. Recall that the standard slicing approach first generates a

ALGORITHM 1 Sliced-Wasserstein distance estimation
Input: xi� μf gni¼1, yi� νf gni¼1, number of slices L

Initialize D 0
for l¼ 1 :L do

(i) Generate a random vector ul from d�1

(ii) Compute bxi¼ ⟨ul,xi⟩ and byi¼ ⟨ul,yi⟩ for i¼ 1,…,n
(iii) Sort bxif gni¼1 and byif gni¼1 in ascending order, denoted by bx i½ �

� 	n
i¼1 and by i½ �

n on

i¼1
, respectively

(iv) D DþPn
i¼1 bx i½ � �by i½ �



 


2=L

end for
Output: D1=2

FIGURE 2 An illustration for approximating the SW distance
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series of one-dimensional random projections, then calculates the Wasserstein distance between the projected samples
w.r.t. each of the projections. Let θ� 0,π½ Þ be the projection angles. The aforementioned one-dimensional Wasserstein
distance can be regarded as a function of θ, denoted by W θð Þ, as illustrated in the right panel of Figure 3. The “best
direction” defined in Deshpande et al. (2019) is simply the θ that yields the largest value of W θð Þ, denoted as the
triangle.

More formally, following the notations in Equation (10), the max-SW distance of order 2 is defined as

max-SW2 μ,νð Þ≔ max
u � d�1

W 2 u�#μ,u
�
#ν

� �
: ð11Þ

Deshpande et al. (2019) proved that the max-SW distance is a real metric and it satisfies the inequality

SW2 μ,νð Þ≤max-SW2 μ,νð Þ≤W 2 μ,νð Þ: ð12Þ

In practice, however, finding the best direction u in Equation (11) is not trivial, as such a maximization problem may
involve a large number of local maximums (Lin et al., 2021; Lin, Fan, et al., 2020). The authors in Deshpande
et al. (2019) proposed an ad-hoc strategy to approximate this u by replacing the Wasserstein distance in the right-hand
side of Equation (11) by the difference between the means of u�#μ and u�#ν, respectively. In other words, they proposed
to utilize the projection direction that resulted in the largest difference between the means of the projected samples.
Such a direction is natural to find.

Recall that to capture the discrepancy between two measures, the SW distance essentially requires considering all
possible projection directions from the unit sphere d�1. The max-SW distance, however, considers only one of them to
increase the efficiency. Despite the effectiveness, the idea of max-SW may be too greedy in some cases, as it ignores
most of the projection directions from d�1. One natural question is whether we can capture the major discrepancy
between two measures by considering a relatively small number of “important” slices. Following this line of thinking,
recently, Nguyen et al. (2020) proposed the distributional sliced-Wasserstein (DSW) distance. The goal is to construct a
more effective sampling probability P (w.r.t. the projection directions) over the unit sphere d�1 such that P represents
how important each projection direction is. Both SW distances and the max-SW distances can be regarded as special
cases of DSW distances, as SW distances take P as the uniform distribution and max-SW distances take P as the delta-
Dirac distribution. Nguyen et al. (2020) proposed a relatively efficient algorithm to calculate DSW distances. In addi-
tion, they proved that, under some mild conditions, DSW distances satisfy

d�1=2max-SW2 μ,νð Þ≤DSW2 μ,νð Þ≤max-SW2 μ,νð Þ:

FIGURE 3 An illustration of the “best direction” used in max-SW distances. The blue dots and yellow dots in the scatter-plot represent

the source and target samples, respectively. The x-axis and the y-axis of the line plots represent the projection direction θ and the

corresponding Wasserstein distance between projected samples, respectively. The “best direction” is labeled as the black arrow in the scatter-

plot and is marked by the triangle in the line plot
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We now consider the second limitation of SW distances that they only consider linear projections. Kolouri
et al. (2019) extended the idea of the SW distances by replacing the linear projections with nonlinear ones. In particular,
instead of projecting the data on a straight line, they proposed to project the data on a one-dimensional manifold using
a particular nonlinear function g. The authors proposed the so-called generalized sliced-Wasserstein (GSW) distance
and showed that it is indeed a well-defined metric for certain nonlinear mapping g0s. Furthermore, the idea of GSW dis-
tances can be combined with the idea of max-SW distances to construct max-GSW distances. In practice, such max-
GSW distances are calculated using an EM-like optimization scheme, that is, optimizing the nonlinear function g and
the projection direction θ iteratively. Kolouri et al. (2019) showed the max-GSW distance could be successfully
implemented in generative models and other applications. The idea of nonlinear projection is also considered in
Nguyen et al. (2020) to generalize the DSW distance.

The slicing approach is also considered in a variant of the Wasserstein distance, called the tree-Wasserstein distance
(Do Ba et al., 2011; Evans & Matsen, 2012; McGregor & Stubbs, 2013), which utilized the so-called tree metrics instead
of the Euclidean metric in OT problems. Le et al. (2019) proposed the tree-SW distance, computed by averaging the
Wasserstein distance w.r.t. random tree metrics.

4 | ITERATIVE PROJECTION APPROACH

SW distance, as a proper metric, has been extensively studied and is known to be able to overcome the problem of
curse-of-dimensionality. As a result, the SW distance and its variants have been regularly used as alternatives to Was-
serstein distances in many real-world applications.

Nevertheless, almost none of the existing SW-based methods can be utilized to estimate the true Wasserstein dis-
tance between the two measures. In fact, the SW distance and its variants may severely underestimate the true Wasser-
stein distance. Consider the case that both μ and ν are d-dimensional Gaussian distribution, that is, μ¼N mμ,Σμ

� �
and

ν¼N mν,Σνð Þ. It is well-known that the Wasserstein distance (of order two) between two Gaussian distributions admits
a closed-form,

W 2
2 μ,νð Þ¼ mμ�mν

�� ��2
2þ trace ΣμþΣν�2 Σ1=2

μ ΣνΣ
1=2
μ

� 
1=2� �
: ð13Þ

Let mμ¼mν¼ 0, Σμ¼ c � Id, and Σν¼ Id. Here, Id is the identity matrix and c>0 is a constant. In such cases,
Equation (13) indicates that W 2

2 μ,νð Þ¼ d
ffiffi
c
p �1ð Þ2: We now consider the SW distance and the max-SW distance

between such μ and ν. Due to the symmetry, the Wasserstein distance between the projected μ and ν w.r.t. any projec-
tion direction remains a constant. Specifically, it is easy to show that SW2

2 μ,νð Þ¼max-SW2
2 μ,νð Þ¼ ffiffi

c
p �1ð Þ2 in such

cases. As a result, the difference between the true Wasserstein distance and the SW distance, including its variants, can
be arbitrarily large as the number of dimensions d increases.

In this section, we introduce the iterative random projection approach, which can be utilized to estimate the true
Wasserstein distance. Recall that the one-dimensional OT components in Algorithm 1 are independent of each other,
and thus the computation of SW distances can be naturally paralleled. In the iterative projection approach, however,
these components are dependent on each other and are added to the estimation process sequentially. As a byproduct,
such an approach also provides an empirical OTM, which may not be obtainable using the slicing approach. The empir-
ical OT map is of particular interest in many real-world applications, for example, color transfer and domain adaptation
(Courty et al., 2016, 2017; Seguy et al., 2018). We now present the idea of the iterative random projection method,
followed by its extension.

4.1 | Iterative random projection method

The iterative random projection method, also called the Radon probability density function (PDF) transformation
method, was first proposed in Pitie et al. (2005) for the application of color transfer. The input of such an application is
two images, each of which can be regarded as a three-dimensional sample in the RGB color space, and each pixel of the
image is an observation. The goal of color transfer is to find a transport map such that the color distribution of the
transformed source image follows the same color distribution of the target image. Although such a transport map does
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not have to be the optimal one w.r.t. the transport cost, their proposed algorithm can be regarded as an efficient estima-
tion method for OTM. Once the empirical OTM has been calculated, the Wasserstein distance can be easily estimated
using Equation (5). Algorithm 2 summarizes the details of the iterative random projection method.

The sequential scheme adopted in Algorithm 2 is beneficial for the estimation of the Wasserstein distance and the
OTM. To see this, consider a synthetic example shown in Figure 4. The goal is to find the OTM that maps the source
sample to the target sample, which are marked in blue and yellow, respectively. Intuitively, if two orthogonal projection
directions are used in Algorithm 2, the algorithm may converge in two steps and outputs an effective estimate of the
OTM as well as the Wasserstein distance.

Instead of randomly generating the projection direction u0s following the Monte Carlo scheme, one can also gener-
ate a sequence of u0s with “low-discrepancy,” that is, the directions that are distributed as disperse as possible on the
unit sphere. The low-discrepancy sequence has been widely applied in the field of quasi-Monte Carlo and has been
extensively employed for numerical integration (Owen, 2003) and subsampling in big data (T. Li & Meng, 2021; Meng
et al., 2022; Meng, Xie, et al., 2020; Meng, Zhang, et al., 2020) see Lemieux (2009), Dick et al. (2013), and
Glasserman (2013); Leobacher and Pillichshammer (2014) for more in-depth discussions. It is shown in Pitie et al. (2005)
that using a low-discrepancy sequence of projection directions results in a potentially faster convergence rate.

4.2 | Projection pursuit Monge map

Despite the effectiveness, in practice, the iterative random projection method may face the same obstacle as the slicing
approach does. In particular, for a moderate or large d, a considerable number of projection directions are required to

ALGORITHM 2 Iterative random projection method
Input: the source sample X�ℝn�d and the target sample Y�ℝn�d

Initialize i 0, X 0½ �  X
repeat

(i) generate a random projection direction ui � d�1

(ii) find the one-dimensional OTM ϕ ið Þ that matches X i½ �ui to Yui

(iii) X iþ1½ �  X i½ � þ ϕ ið Þ X i½ �ui
� ��X i½ �ui

� �
uT
i

(iv) i iþ1
until converge.
The final map is given by bϕ :X!X i½ �

FIGURE 4 Illustration of the iteration projection method. Blue dots and yellow dots represent the source sample and the target sample,

respectively. A projection direction u1 is used in the first iteration and is shown in the left panel. The middle panel shows the transformed

source sample after the first iteration. We then consider a projection direction u2 that is orthogonal to u1. After two iteration steps, two

samples roughly have same distribution, as shown in the right panel
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explore the unit sphere d�1, while most of them may contain only tiny information and contribute only a little to the
final estimation. As a result, Algorithm 2 usually suffers from slow convergence in practice.

To overcome the limitation, Meng et al. (2019) proposed a variant of the iterative random projection method, named
projection pursuit Monge map (PPMM).1 The PPMM method combines the idea of projection pursuit regression and
sufficient dimension reduction (SDR). In each iteration, PPMM seeks the “most informative” direction instead of using
a randomly selected one.

At first glance, such an idea may seem similar to the idea behind the max-SW distance. Recall that the best direction
defined in the max-SW distance is the one that yields the largest value of the Wasserstein distance between the projec-
ted samples. One limitation of such a definition is that the desired best direction does not admit a closed-form, and thus
optimization techniques are required to find such a direction. The PPMM method, however, takes a different path to
achieve the goal. In particular, PPMM provides a definition for the most informative direction, such that it admits a
closed-form.

The idea behind PPMM is inspired by the SDR approach. Consider a regression problem with a univariate response
T and a d-dimensional predictor Z. SDR techniques aim to reduce the dimension of Z while preserving its regression
relation with T. In other words, such techniques seek a set of linear combinations of Z, say BTZ with a projection
matrix B�ℝd�k (k< d), such that T depends on Z only through BTZ, that is,

T╨Z jBTZ: ð14Þ

Numerous methods have developed to estimate such projection matrix B0s, includes sliced inverse regression (SIR)
(K.-C. Li, 1991), principal Hessian directions (pHd) (K.-C. Li, 1992), sliced average variance estimator (SAVE) (Cook &
Weisberg, 1991), directional regression (DR) (B. Li & Wang, 2007); see B. Li (2018) for a detailed review.

Consider the problem of estimating the Wasserstein distance between a source sample and a target sample. Let Z be
both samples, serving as the predictors in the regression problem. Let T be a constructed binary response variable,
labeled as 0 and 1 for two samples, respectively. Under such a scenario, loosely speaking, Equation (14) indicates that,
conditional on the projected variables, the probability P ZjT¼ 1ð Þ and P ZjT¼ 0ð Þ have the same distribution. In other
words, the subspace spanned by the column vectors of B contains all the information of the Wasserstein distance as
well as the OTP between the observed samples. As a result, such a subspace can be regarded as an “informative sub-
space” for the OT problem. Furthermore, intuitively, the eigenvector w.r.t. the largest eigenvalue of the projection
matrix B can be regarded as the most informative one-dimensional projection direction.

Following this line of thinking, Meng et al. (2019) defined the most informative direction as the eigenvector w.r.t.
the largest eigenvalue of B. In practice, such B0s can be easily estimated by existing SDR techniques. It is recommended
to use the SAVE method or the DR method, as both methods utilize the first moment and the second-moment informa-
tion of the observed samples to provide a closed-form estimator for B. Let bB denote the estimated projection matrix and
u 1½ � denote its eigen-vector w.r.t. the largest eigenvalue. The PPMM algorithm is very much alike Algorithm 2, except
that a random direction ui in Step (i) is replaced by the determined direction u 1½ �

i =
���u 1½ �

i

���, in the i-th iteration. We refer
to Meng et al. (2019) for further details.

4.3 | Empirical comparison between PPMM and max-SW

Loosely speaking, the projection direction u 1½ � determined by the PPMM method indicates that, among all possible pro-
jection directions, the projected samples respecting u 1½ � yield the largest discrepancy between each other. Such a dis-
crepancy reflects both the difference w.r.t. the means and the variance. Intuitively, such projected samples also yield a
relatively large Wasserstein distance. One natural question remains, what is the difference between the direction deter-
mined by the PPMM method and the one calculated in the max-SW distance? Although theoretical analysis of such a
question is lacking, we provide the following synthetic examples to compare these two projection directions in different
settings.

Four synthetic datasets are shown in Figure 5. In each panel, the source sample and the target sample are marked
by yellow and blue points, respectively. Four different settings for data generation are considered:

• In Figure 5a, the samples are generated from two Gaussian distributions with the same variance–covariance matrix
and different means, respectively;
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• In Figure 5b, the samples are generated from two Gaussian distributions with the same mean and different variance–
covariance matrices, respectively;

• In Figure 5c, the samples are generated from two Gaussian distributions with different means and different
variance–covariance matrices, respectively;

• In Figure 5d, the samples are generated from two different mixture-Gaussian distributions, respectively.

In each panel, the projection directions determined by PPMM are labeled as colored directions in the scatter plots.
In particular, the red ones represent the cases where the SAVE algorithm is implemented in PPMM, while for the blue
ones, the DR algorithm is implemented. We observe that both methods provide projection directions that are similar to
each other. Recall in Figure 3 that for each synthetic dataset, we can draw a line plot showing the projection direction θ
versus the corresponding Wasserstein distance W θð Þ. In addition, the “best direction” defined in max-SW is the θ that
yields the largest value of W θð Þ. In each of the line plots, the projection directions determined by PPMM are denoted
by colored triangles. We observe that in panels (a)-(c), the directions selected PPMM are almost the same as the best
direction defined in the max-SW distance, as the colored triangles approximately achieve the maximum value of W θð Þ.
In panel (d), we observe that these two methods yield slightly different projection directions.

Figure 5 indicates it is possible that the PPMM method and the max-SW method pick the same projection direction
in some situations. While in general cases, these two methods select different ones. Further studies are needed to quan-
tify the difference between the selected directions w.r.t. these two methods, respectively. Recall that one major advan-
tage of PPMM over max-SW is that the former admits a closed-form of the desired projection direction. In practice, it is
not trivial to find the best direction for the max-SW distance, as such a maximization problem may involve a large num-
ber of local maximums. In contrast, PPMM provides a user-friendly iterative algorithm, and it takes O d2nlog nð Þ� �

time
for each iteration. Empirical results show that PPMM works well when the number of iterations is in the same order of
d, in which case the computational cost of the PPMM algorithm is of the order O d3nlog nð Þ� �

(Meng et al., 2019). The
PPMM method thus has the potential to construct a computationally efficient alternative for max-SW distance in real-
life applications, especially when d	n.

4.4 | Robustness of PPMM

One major concern of the PPMM approach is that both SAVE and DR methods, which PPMM highly relies on, require
relatively strong moment conditions on the data (B. Li, 2018). Fortunately, PPMM is an iterative algorithm, thus, the

FIGURE 5 Comparison between the direction determined by the PPMMmethod and the one used in the max-SW distance. The directions

determined by the first iteration of the PPMM algorithm, implemented with SAVE and DR, are labeled as red and black directions in the scatter

plots, respectively. The x-axis and the y-axis of the line plots represent the projection direction θ and the corresponding Wasserstein distance

between projected samples, respectively. In the line plots, the directions determined by the first iteration of the PPMM algorithm are denoted

by triangles. Note that the “best direction” used in max-SW distances is not shown. However, by definition, such a direction is the one that

yields the maximum value of the y-axis in line plots. We observe that in panels (a)–(c), the directions determined by PPMM are almost the

same as the best direction defined in max-SW. While in panel (d), these two methods yield slightly different projection directions
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moment conditions may change dramatically in each iteration since the OT step in that iteration will modify the empir-
ical distribution of the source sample. This is to say, the violation of the moment conditions may be weakened during
the iterations of the PPMM algorithm. We consider a synthetic dataset to evaluate the robustness of PPMM. The two-
dimensional source and target samples in this synthetic dataset are generated from two C-shaped trigonometric curves,
respectively. For each sample, we first generate 300 data points and then standardize the sample such that its empirical
mean equals zero and its empirical variance–covariance matrix equals the identity matrix. The synthetic dataset is visu-
alized in Figure 6, where the source sample and the target sample are marked by yellow and blue points, respectively.
The projection directions determined by PPMM2 during the iterations are labeled as red directions in the scatter plots.
These directions are also denoted by red triangles in the line plots. It is clear that such an example violates the moment
conditions dramatically, and it is impossible for PPMM to find the most informative projection direction in the first iter-
ation. However, after several iterations, we observe that the distribution of the source sample changes and the source
sample fits the target sample reasonably well when the PPMM algorithm converges. Such a result indicates that PPMM
is quite robust even when the moment conditions are dramatically violated.

5 | PROJECTION ROBUST OT METHODS

Encouraged by the success of max-SW, Paty and Cuturi (2019) asked whether one can gain more by seeking a “best sub-
space” of dimension k≥ 2 rather than the “best direction” considered in max-SW. In particular, Paty and Cuturi (2019)
proposed to look for the k-dimensional subspace that would maximize the Wasserstein distance between two measures
after projection and defined such maximum quantity as the projection robust Wasserstein (PRW) distance. Note that
PRW distance is equivalent to max-SW distance when k¼ 1. Intuitively, the PRW distance could be regarded as a metric
learning technique, such that the goal is to learn a better metric to quantify the cost matrix when estimating the Was-
serstein distance. As a result, PRW shows an advantage over the max-SW distance when a k-dimensional (k≥ 2)
squared Euclidean cost results in a more accurate estimation of the Wasserstein distance than the 1-dimensional
counterpart.

Figure 7 illustrates the idea of the best subspace. The three-dimensional source sample and the target sample are
labeled by blue dots and yellow dots, respectively. The samples share the same marginal distributions in all three
dimensions with different correlations between the first two dimensions, as shown in Figure 7a. Note that a two-

FIGURE 6 Visualization of the PPMM method. The directions determined by PPMM during the iterations are labeled as red directions

in the scatter plots. These directions are denoted by triangles in the line plots. We observe that PPMM is able to provide a robust estimation

of the Monge map even when the moment conditions of the dataset are dramatically violated
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dimensional subspace is determined by the azimuth angle and the elevation angle. Let θa � �π=2,π=2½ Þ be the azimuth
angle and θe � �π=2,π=2½ Þ be the elevation angle. Analogous to the example in Figure 3, the Wasserstein distance
between the projected samples w.r.t. a two-dimensional subspace can be regarded as a function of θa and θe. We denote
W θa,θeð Þ to be such a function and plot it in Figure 7b. Figure 7b indicates that the pair θa,θeð Þ w.r.t. the best subspace
is the one such that θe¼ 0. As a result, the best subspace is the one that is spanned by e1 and e2. The projected samples
w.r.t. such a best subspace is shown in Figure 7c.

The problem of finding the best subspace in OT problems is also considered in Alvarez-Melis et al. (2018); Dhouib
et al. (2020); Muzellec and Cuturi (2019); Paty and Cuturi (2019). We introduce the detail of the PRW distance and its
variants in this section.

5.1 | Subspace robust Wasserstein distance

We first provide some essential notations. For k� 1,…,d�1f g, the Grassmannian of k-dimensional subspaces of ℝd is
defined as Gk ¼ E �ℝdjdim Eð Þ¼ k

� 	
. For E �Gk, let PE be the orthogonal projector onto the subspace E. Analogous to

the definition of max-SW distance in Equation (11), the definition of PRW distance is a natural extension of max-SW
distance that considers the worst possible OT cost over all possible k dimensional projections. More formally, given two
measures μ,ν�P2 ℝd

� �
, the PRW distance of order two between μ and ν is defined as

PRWk μ,νð Þ≔ sup
E � Gk

W PE#μ,PE#νð Þ: ð15Þ

The “min-max” problem in Equation (15) is non-convex and falls back on a convex relaxation; thus is well-defined
yet hard to solve. To overcome the obstacle, Paty and Cuturi (2019) considered a “max-min” variant of PRW distances,
named subspace robust Wasserstein (SRW) distance. Intuitively, SRW distances can be regarded as a convex relaxation
of PRW distances and thus tend to be easier to compute. Specifically, the SRW distance of order two is defined as

SRWk μ,νð Þ≔ inf
π � Π μ,νð Þ

sup
E � Gk

Z ���PE x� yð Þ2
���dπ x,yð Þ

� �1=2
: ð16Þ

Paty and Cuturi (2019) showed that both PRW and SRW are indeed “distances” over P2 ℝd
� �

and it can be proved
that PRWk μ,νð Þ≤ SRWk μ,νð Þ for a fixed k.

Let Ω�ℝd�d be a symmetric positive semi-definite matrix. For two matrices A,B�ℝd�d, we write A
B if A�B is
positive semi-definite. Considering the Mahalanobis distance d2Ω such that

FIGURE 7 Illustration of the “best subspace.” The blue dots and yellow dots in (a) represent the source and target samples, respectively.

The x-axis and the y-axis of (b) represent the azimuth angle θa and the elevation angle θe of the subspace, respectively. The z-axis of

(b) represents the corresponding Wasserstein distance between projected samples. The “best subspace” is associated with θe¼ 0 (marked as

the red dashed line) that yields the largest value of W θa,θeð Þ in (b). The projected samples w.r.t. such a best subspace is shown in (c)
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d2Ω x,yð Þ¼ x�yð ÞTΩ x�yð Þ:

Paty and Cuturi (2019) proved that both the infimum and the supremum are achieve-able in Equation (16), and
such SRW distances can be written as a min-max problem w.r.t. to dΩ2 , that is,

SRWk μ,νð Þ¼ min
π � Π μ,νð Þ

max
0 ≼ Ω ≼ Id

trace Ωð Þ¼k

Z
d2Ωdπ

� �1=2
: ð17Þ

Equation (17) indicates that the problem of calculating the SRW distance can be regarded as seeking the best dis-
tance metric dΩ.

Furthermore, Paty and Cuturi (2019) showed that SRW distances could be elegantly reformulated as a function of
the eigendecomposition of the second-order displacement matrix Vπ . Here, the matrix Vπ is defined as

Vπ ≔
Z

x�yð Þ x�yð ÞTdπ x,yð Þ: ð18Þ

In particular, considering the case when the OTM ϕ� between two equally weighted samples xif gni¼1 and yif gni¼1
exists. In such cases, the vectors xi�ϕ� xið Þf gni¼1 are usually called the displacement vectors, and the matrix Vπ is sim-
ply the second-order moment of all the displacements, that is,

Pn
i¼1 x�ϕ� xð Þð Þ x�ϕ� xð Þð ÞT=n. Comparing Equation (18)

with the definition of the Wasserstein distance in Equation (6), it is easy to notice that computing the Wasserstein dis-
tance of order two can be simply interpreted as minimizing the trace of Vπ w.r.t. all possible OTP π's. In other words,
let λi denote the i-th largest eigenvalue of Vπ , i¼ 1,…,d, one thus has

W 2 μ,νð Þ¼ min
π � Π μ,νð Þ

Xd
i¼1

λi Vπð Þ:

Following this line of thinking, Paty and Cuturi (2019) noted that SRW distance admits a simple formulation,

SRW2
k μ,νð Þ¼ min

π � Π μ,νð Þ

Xk
i¼1

λi Vπð Þ: ð19Þ

Motivated by Equations (17) and (19), Paty and Cuturi (2019) proposed an iterative algorithm to compute SRW dis-
tances in practice. Intuitively, the idea is that, for a given k, one can iteratively optimize between the distance metric dΩ
and the OTP π. More specifically, given a distance metric, one can utilize standard OT methods, for example, the Sin-
khorn algorithm, to calculate the OTP π. Next, one can extract the largest k eigenvectors of such an OTP π to form a
new distance metric. One then can utilize such a distance metric to calculate a new OTP, and so on so forth. Such an
algorithm is called the Frank-Wolfe algorithm for regularized SRW and is summarized in Algorithm 3. We refer to Paty
and Cuturi (2019) for more details about the stopping criterion of Algorithm 3.

Empirical studies show Algorithm 3 can successfully recover the informative subspace of the data and is more robust
to the noise compared to the classical Wasserstein distance. For the choice of k, the authors showed SRW works well for
a relatively broad range of k (Paty & Cuturi, 2019). In practice, it is recommended to select k that results in the “elbow”
in the scree plot, just like how people choose the number of principal components in the principal component analysis.

5.2 | Projection robust Wasserstein distance

Lin, Fan, et al. (2020) noted that as an alternative to PRW distances, SRW distances might result in suboptimal perfor-
mance in practice. To overcome the limitation, they revisited the original PRW problem (15) and showed that, despite
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the hardness, such a problem could be efficiently computed in practice using Riemannian optimization. The authors
proposed three practical algorithms for computing PRW distances and showed that their methods yielded better behav-
ior than SRW distances.

Recently, Lin et al. (2021) extended the definition of the PRW distance to the so-called integral projection robust
Wasserstein (IPRW) distance. The relationship between IPRW and PRW is very much similar to the relationship
between SW and max-SW. In particular, instead of considering only the best k-dimensional subspace, as did in PRW,
IPRW considered the averages of all possible k-dimensional subspaces. Statistical properties of both PRW distances and
IPRW distances are analyzed in Lin et al. (2021). They showed that an empirical measure converges to its
corresponding true measure w.r.t. PRW or IPRW distance roughly at the order of O n�1=k

� �
, under certain conditions.

Such results indicate that both PRW and IPRW tend to overcome the problem of curse-of-dimensionality faced by Was-
serstein distances and thus are very likely to outperform Wasserstein distances in high-dimensional tasks.

6 | CONCLUSION AND FUTURE RESEARCH

In this article, we reviewed projection-based techniques in OT problems, including the slicing approach, the iterative
projection approach, and the projection robust OT approach. Existing studies showed most of such methods have the
potential to overcome the problem of curse-of-dimensionality. These approaches thus are widely used as an alternative
for the classical Wasserstein distance and the OTPs in practice.

Most reported research efforts are exploring projection-based techniques for the classical OT problem and Wasser-
stein distances. In contrast, there is relatively little reported work in literature discussing such methods for other OT-
related problems such as unbalanced OT (partial OT), Gromov Wasserstein distances, Wasserstein barycenter, multi-
margin OT problems, among others (Peyré et al., 2019). A few exceptions are Bonneel et al. (2015) and Vayer
et al. (2019), which showed that the slicing approach could be applied in constructing Wasserstein barycenters and
accelerating the estimation of Gromov Wasserstein distances. More research efforts are required to develop effective
and efficient projection-based algorithms for a broader scope of OT problems.

Another interesting research issue open for future investigation is to develop fast variable selection methods or
screening methods for OT problems. Most projection-based methods reviewed in this article require the computational
cost at least of the order O d2

� �
w.r.t. the dimension d. Such a sizable computational cost hinders the broad applicability

of OT methods in ultra-high dimensional problems, for example, when d≈ 106 and d�n. Suppose there exist some
screening methods that can exclude a large number of “irrelevant” variables using O dð Þ computational time. It may be
preferable to first apply such methods before using existing projection-based techniques. Such a two-step approach is
analogous to the postselection inference, which aims at making inference conditional on the selection (Berk

ALGORITHM 3 Frank–Wolfe algorithm for regularized SRW
Input: Empirical measures μ and ν, dimension k, regularization parameter η>0

Initialize π reg_OT μ,νð Þ, reg¼ η,cost¼ �k k2� �
Uk �ℝd�k top k eigenvecotrs of Vπ

Ω UkUT
k

t 0
repeat

π reg_OT μ,νð Þ, reg¼ η,cost¼ d2Ω
� �

Uk �ℝd�k top k eigenvecotrs of VπbΩ UkUT
k

τ¼ 2= 2þ tð Þ
Ω¼ 1� τð ÞΩþ τbΩ
t tþ1

until converge
Output: Ω, π
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et al., 2013; Lee et al., 2016; Liu et al., 2020; Taylor & Tibshirani, 2018; Tibshirani et al., 2016), and could be a possible
solution for dealing with ultra-high dimensional OT problems. How to develop a valid screening method for OT prob-
lems thus is an essential topic for future investigation.
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